Learning Individually Inferred Communication for Multi-Agent Cooperation

被引:0
|
作者
Ding, Ziluo [1 ]
Huang, Tiejun [1 ]
Lu, Zongqing [1 ]
机构
[1] Peking Univ, Beijing, Peoples R China
关键词
LEVEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Communication lays the foundation for human cooperation. It is also crucial for multi-agent cooperation. However, existing work focuses on broadcast communication, which is not only impractical but also leads to information redundancy that could even impair the learning process. To tackle these difficulties, we propose Individually Inferred Communication (I2C), a simple yet effective model to enable agents to learn a prior for agent-agent communication. The prior knowledge is learned via causal inference and realized by a feed-forward neural network that maps the agent's local observation to a belief about who to communicate with. The influence of one agent on another is inferred via the joint action-value function in multi-agent reinforcement learning and quantified to label the necessity of agent-agent communication. Furthermore, the agent policy is regularized to better exploit communicated messages. Empirically, we show that I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios, comparing to existing methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Research on cooperation and reinforcement learning algorithm in multi-agent systems
    Zheng, Shuli
    Han, Jianghong
    Luo, Xiangfeng
    Jiang, Jianwen
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2002, 15 (04): : 453 - 457
  • [42] Multi-agent reinforcement learning based on local communication
    Zhang, Wenxu
    Ma, Lei
    Li, Xiaonan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 6): : 15357 - 15366
  • [43] Targeted Multi-Agent Communication with Deep Metric Learning
    Miao, Hua
    Yu, Nanxiang
    ENGINEERING LETTERS, 2023, 31 (02) : 712 - 723
  • [44] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [45] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [46] Multi-Agent Path Finding with Prioritized Communication Learning
    Li, Wenhao
    Chen, Hongjun
    Jin, Bo
    Tan, Wenzhe
    Zha, Hongyuan
    Wang, Xiangfeng
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 10695 - 10701
  • [47] Multi-Agent Reinforcement Learning for Coordinating Communication and Control
    Mason, Federico
    Chiariotti, Federico
    Zanella, Andrea
    Popovski, Petar
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (04) : 1566 - 1581
  • [48] Universally Expressive Communication in Multi-Agent Reinforcement Learning
    Morris, Matthew
    Barrett, Thomas D.
    Pretorius, Arnu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [49] Learning Selective Communication for Multi-Agent Path Finding
    Ma, Ziyuan
    Luo, Yudong
    Pan, Jia
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 1455 - 1462
  • [50] Improving coordination with communication in multi-agent reinforcement learning
    Szer, D
    Charpillet, F
    ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 436 - 440