Targeted Multi-Agent Communication with Deep Metric Learning

被引:0
|
作者
Miao, Hua [1 ,2 ]
Yu, Nanxiang [3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing, Peoples R China
[2] Chongqing Univ Technol, Sch Comp Sci & Engn, Chongqing, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Key Lab Intelligent Anal & Decis Complex Syst, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep Reinforcement Learning; Deep Metric Learning; Targeted Communication; Multi-Agent Systems; MARGIN SOFTMAX;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
novel targeted multi-agent communication model based on deep metric learning (DMLTarMAC) is proposed in this paper. The nonlinear relationship between the internal state of an agent and the received message is described by the deep metric learning (DML) module in DMLTarMAC. Compared with the scheme using a linear relationship, DMLTarMAC can improve the accuracy and effectiveness of the receiver's attention. In order to reveal the advantage of the proposed DMLTarMAC, it is evaluated in cooperative and competitive multi-agent tasks with different difficulty levels and environment settings. The experimental results show that DMLTarMAC outperforms the benchmarks, especially in challenging settings. Furthermore, the ablation experiments demonstrate that agents' communication and behavior strategies are effective and intuitive.
引用
收藏
页码:712 / 723
页数:12
相关论文
共 50 条
  • [1] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [2] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [3] TarMAC: Targeted Multi-Agent Communication
    Das, Abhishek
    Gervet, Theophile
    Romoff, Joshua
    Batra, Dhruv
    Parikh, Devi
    Rabbat, Michael
    Pineau, Joelle
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] Learning multi-agent communication with double attentional deep reinforcement learning
    Mao, Hangyu
    Zhang, Zhengchao
    Xiao, Zhen
    Gong, Zhibo
    Ni, Yan
    [J]. AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2020, 34 (01)
  • [5] Learning multi-agent communication with double attentional deep reinforcement learning
    Hangyu Mao
    Zhengchao Zhang
    Zhen Xiao
    Zhibo Gong
    Yan Ni
    [J]. Autonomous Agents and Multi-Agent Systems, 2020, 34
  • [6] Deep Hierarchical Communication Graph in Multi-Agent Reinforcement Learning
    Liu, Zeyang
    Wan, Lipeng
    Sui, Xue
    Chen, Zhuoran
    Sun, Kewu
    Lan, Xuguang
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 208 - 216
  • [7] Learning controlled and targeted communication with the centralized critic for the multi-agent system
    Sun, Qingshuang
    Yao, Yuan
    Yi, Peng
    Hu, YuJiao
    Yang, Zhao
    Yang, Gang
    Zhou, Xingshe
    [J]. APPLIED INTELLIGENCE, 2023, 53 (12) : 14819 - 14837
  • [8] Learning controlled and targeted communication with the centralized critic for the multi-agent system
    Qingshuang Sun
    Yuan Yao
    Peng Yi
    YuJiao Hu
    Zhao Yang
    Gang Yang
    Xingshe Zhou
    [J]. Applied Intelligence, 2023, 53 : 14819 - 14837
  • [9] Exploring communication protocols and centralized critics in multi-agent deep learning
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2020, 27 (04) : 333 - 351
  • [10] Learning communication for multi-agent systems
    Giles, CL
    Jim, KC
    [J]. INNOVATIVE CONCPTS FOR AGENT-BASED SYSTEMS, 2002, 2564 : 377 - 390