Saliency-Aware Deep Learning Approach for Enhanced Endoscopic Image Super-Resolution

被引:2
|
作者
Hayat, Mansoor [1 ]
Aramvith, Supavadee [2 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Dept Elect Engn, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Fac Engn, Dept Elect Engn, Multimedia Data Analyt & Proc Res Unit, Bangkok 10330, Thailand
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Surgery; Visualization; Image resolution; Deep learning; Imaging; Feature extraction; Biomedical imaging; Robotic surgery; stereo endoscopic surgical imaging; SR; surgical instruments;
D O I
10.1109/ACCESS.2024.3402953
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The adoption of Stereo Imaging technology within endoscopic procedures represents a transformative advancement in medical imaging, providing surgeons with depth perception and detailed views of internal anatomy for enhanced diagnostic accuracy and surgical precision. However, the practical application of stereo imaging in endoscopy faces challenges, including the generation of low-resolution and blurred images, which can hinder the effectiveness of medical diagnoses and interventions. Our research introduces an endoscopic image SR model in response to these specific. This model features an innovative feature extraction module and an advanced cross-view feature interaction module tailored for the intricacies of endoscopic imagery. Initially trained on the SCARED dataset, our model was rigorously tested across four additional publicly available endoscopic image datasets at scales 2, 4, and 8, demonstrating unparalleled performance improvements in endoscopic SR. Our results are compelling. They show that our model not only substantially enhances the quality of endoscopic images but also consistently surpasses other existing methods like E-SEVSR, DCSSRNet, and CCSBESR in all tested datasets, in quantitative measures such as PSNR and SSIM, and in qualitative evaluations. The successful application of our SR model in endoscopic imaging has the potential to revolutionize medical diagnostics and surgery, significantly increasing the precision and effectiveness of endoscopic procedures. The code will be released on GitHub and can be accessed at https://github.com/cu-vtrg-lab/Saliency-Aware-Deep-Learning-Approach-for-Enhanced-Endoscopic-Image-SR.
引用
收藏
页码:83452 / 83465
页数:14
相关论文
共 50 条
  • [31] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [32] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [33] A brief survey on deep learning based image super-resolution
    Zhu X.
    Li S.
    Wang L.
    High Technology Letters, 2021, 27 (03) : 294 - 302
  • [34] Image super-resolution reconstruction based on deep dictionary learning and A
    Huang, Yi
    Bian, Weixin
    Jie, Biao
    Zhu, Zhiqiang
    Li, Wenhu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2629 - 2641
  • [35] Recent Advances in Deep Learning for Single Image Super-Resolution
    Zhang, Yungang
    Xiang, Yu
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 85 - 95
  • [36] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 (04) : 413 - 426
  • [37] Chip Image Super-Resolution Reconstruction Based on Deep Learning
    Fan M.
    Chi Y.
    Zhang M.
    Li Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 353 - 360
  • [38] Exploring Deep Learning Image Super-Resolution for Iris Recognition
    Ribeiro, Eduardo
    Uhl, Andreas
    Alonso-Fernandez, Fernando
    Farrugia, Reuben A.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 2176 - 2180
  • [39] Deep Image and Kernel Prior Learning for Blind Super-Resolution
    Yamawaki, Kazuhiro
    Han, Xian-Hua
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA IN ASIA, MMASIA 2022, 2022,
  • [40] Image super-resolution algorithm based on deep learning network
    Chen, Jian
    Wang, Xiang
    Li, Qinrui
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 : 180 - 181