Saliency-Aware Deep Learning Approach for Enhanced Endoscopic Image Super-Resolution

被引:2
|
作者
Hayat, Mansoor [1 ]
Aramvith, Supavadee [2 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Dept Elect Engn, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Fac Engn, Dept Elect Engn, Multimedia Data Analyt & Proc Res Unit, Bangkok 10330, Thailand
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Surgery; Visualization; Image resolution; Deep learning; Imaging; Feature extraction; Biomedical imaging; Robotic surgery; stereo endoscopic surgical imaging; SR; surgical instruments;
D O I
10.1109/ACCESS.2024.3402953
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The adoption of Stereo Imaging technology within endoscopic procedures represents a transformative advancement in medical imaging, providing surgeons with depth perception and detailed views of internal anatomy for enhanced diagnostic accuracy and surgical precision. However, the practical application of stereo imaging in endoscopy faces challenges, including the generation of low-resolution and blurred images, which can hinder the effectiveness of medical diagnoses and interventions. Our research introduces an endoscopic image SR model in response to these specific. This model features an innovative feature extraction module and an advanced cross-view feature interaction module tailored for the intricacies of endoscopic imagery. Initially trained on the SCARED dataset, our model was rigorously tested across four additional publicly available endoscopic image datasets at scales 2, 4, and 8, demonstrating unparalleled performance improvements in endoscopic SR. Our results are compelling. They show that our model not only substantially enhances the quality of endoscopic images but also consistently surpasses other existing methods like E-SEVSR, DCSSRNet, and CCSBESR in all tested datasets, in quantitative measures such as PSNR and SSIM, and in qualitative evaluations. The successful application of our SR model in endoscopic imaging has the potential to revolutionize medical diagnostics and surgery, significantly increasing the precision and effectiveness of endoscopic procedures. The code will be released on GitHub and can be accessed at https://github.com/cu-vtrg-lab/Saliency-Aware-Deep-Learning-Approach-for-Enhanced-Endoscopic-Image-SR.
引用
收藏
页码:83452 / 83465
页数:14
相关论文
共 50 条
  • [11] Saliency adaptive super-resolution image reconstruction
    Liu, Zhenyu
    Tian, Jing
    Chen, Li
    Wang, Yongtao
    OPTICS COMMUNICATIONS, 2012, 285 (06) : 1039 - 1043
  • [12] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [13] Learning Deep Analysis Dictionaries for Image Super-Resolution
    Huang, Jun-Jie
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6633 - 6648
  • [14] Deep Learning for Multiple-Image Super-Resolution
    Kawulok, Michal
    Benecki, Pawel
    Piechaczek, Szymon
    Hrynczenko, Krzysztof
    Kostrzewa, Daniel
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1062 - 1066
  • [15] Deep Bilateral Learning for Stereo Image Super-Resolution
    Xu, Qingyu
    Wang, Longguang
    Wang, Yingqian
    Sheng, Weidong
    Deng, Xinpu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 613 - 617
  • [16] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [17] Deep Learning for Image/Video Restoration and Super-resolution
    Tekalp, A. Murat
    FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2022, 13 (01): : 1 - 110
  • [18] Enhanced Deep Learning Super-Resolution for Bathymetry Data
    Li, Xingyan
    Li, Jian
    Williams, Zachary
    Huang, Xin
    Carroll, Mark
    Wang, Jianwu
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT, 2022, : 48 - 57
  • [19] Deep Learning based Frameworks for Image Super-Resolution and Noise-Resilient Super-Resolution
    Sharma, Manoj
    Chaudhury, Santanu
    Lall, Brejesh
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 744 - 751
  • [20] A Deep Learning Framework for Image Super-Resolution for Late Gadolinium Enhanced Cardiac MRI
    Upendra, Roshan Reddy
    Simon, Richard
    Linte, Cristian A.
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,