Protocol for performing deep learning-based fundus fluorescein angiography image analysis with classification and segmentation tasks

被引:0
|
作者
Lin, Zhenzhe [1 ]
Zhao, Xinyu [1 ,2 ]
Yu, Shanshan [1 ]
Xie, Liqiong [1 ]
Xu, Yue [1 ]
Zhao, Lanqin [1 ]
Zhang, Guoming [2 ]
Zhang, Shaochong [2 ]
Lu, Yan [3 ]
Lin, Haotian [1 ,4 ,5 ,6 ,7 ]
Liang, Xiaoling [1 ]
Lin, Duoru [1 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Ophthalmol & Visual Sci, Guangdong Prov Clin Res Ctr Ocular Dis, State Key Lab Ophthalmol,Zhongshan Ophthalm Ctr, Guangzhou 510060, Peoples R China
[2] Jinan Univ, Shenzhen Eye Hosp, Shenzhen Eye Inst, Shenzhen 518040, Peoples R China
[3] Foshan Second Peoples Hosp, Foshan 528001, Peoples R China
[4] Sun Yat Sen Univ, Hainan Eye Hosp, Haikou 570311, Peoples R China
[5] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, Key Lab Ophthalmol, Haikou 570311, Peoples R China
[6] Sun Yat Sen Univ, Ctr Precis Med, Guangzhou 510080, Peoples R China
[7] Sun Yat Sen Univ, Zhongshan Sch Med, Dept Genet & Biomed Informat, Guangzhou 510080, Peoples R China
来源
STAR PROTOCOLS | 2024年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
Protocol for multi;
D O I
10.1016/j.xpro.2024.103134
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fundus fluorescein angiography (FFA) examinations are widely used in the evaluation of fundus disease conditions to facilitate further treatment suggestions. Here, we present a protocol for performing deep learning -based FFA image analytics with classification and segmentation tasks. We describe steps for data preparation, model implementation, statistical analysis, and heatmap visualization. The protocol is applicable in Python using customized data and can achieve the whole process from diagnosis to treatment suggestion of ischemic retinal diseases. For complete details on the use and execution of this protocol, please refer to Zhao et al. 1
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Deep Learning-Based Classification and Segmentation of Sperm Head and Flagellum for Image-Based Flow Cytometry
    Hernandez-Herrera, Paul
    Abonza, Victor
    Sanchez-Contreras, Jair
    Darszon, Alberto
    Guerrero, Adan
    COMPUTACION Y SISTEMAS, 2023, 27 (04): : 1133 - 1145
  • [32] Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease
    P. R. Buvaneswari
    R. Gayathri
    Arabian Journal for Science and Engineering, 2021, 46 : 5373 - 5383
  • [33] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [34] Deep Learning-Based Segmentation in Classification of Alzheimer's Disease
    Buvaneswari, P. R.
    Gayathri, R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (06) : 5373 - 5383
  • [35] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [36] Quality assessment of colour fundus and fluorescein angiography images using deep learning
    Konig, Michael
    Seebock, Philipp
    Gerendas, Bianca S.
    Mylonas, Georgios
    Winklhofer, Rudolf
    Dimakopoulou, Ioanna
    Schmidt-Erfurth, Ursula Margarethe
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2024, 108 (01) : 98 - 104
  • [37] Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation
    Lee, Seul Bi
    Hong, Youngtaek
    Cho, Yeon Jin
    Jeong, Dawun
    Lee, Jina
    Yoon, Soon Ho
    Lee, Seunghyun
    Choi, Young Hun
    Cheon, Jung-Eun
    KOREAN JOURNAL OF RADIOLOGY, 2023, 24 (04) : 294 - 304
  • [38] Deep Learning-Based Image Segmentation on Multimodal Medical Imaging
    Guo, Zhe
    Li, Xiang
    Huang, Heng
    Guo, Ning
    Li, Quanzheng
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 162 - 169
  • [39] A Deep Learning-Based Interactive Medical Image Segmentation Framework
    Mikhailov, Ivan
    Chauveau, Benoit
    Bourdel, Nicolas
    Bartoli, Adrien
    APPLICATIONS OF MEDICAL ARTIFICIAL INTELLIGENCE, AMAI 2022, 2022, 13540 : 98 - 107
  • [40] imageseg: An R package for deep learning-based image segmentation
    Niedballa, Juergen
    Axtner, Jan
    Doebert, Timm Fabian
    Tilker, Andrew
    An Nguyen
    Wong, Seth T.
    Fiderer, Christian
    Heurich, Marco
    Wilting, Andreas
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (11): : 2363 - 2371