Tools for editing the mammalian mitochondrial genome

被引:2
|
作者
Moraes, Carlos T. [1 ]
机构
[1] Univ Miami, Miller Sch Med, 1600 NW 10th Ave,Room 7044, Miami, FL 33136 USA
关键词
mitochondrial manipulation; genetic enhancements; TALEN technology; gene modification; base editing; DNA COPY NUMBER; MTDNA HETEROPLASMY; SELECTIVE ELIMINATION; MANIPULATION; DELIVERY; SEQUENCE;
D O I
10.1093/hmg/ddae037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.
引用
收藏
页码:R92 / R99
页数:8
相关论文
共 50 条
  • [41] Genome editing to treat mitochondrial DNA disorders
    Avaria, M. A.
    Kleinsteuber, K.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2015, 357 : E503 - E503
  • [42] CRISPR-Mediated Genome Editing in the Mammalian Brain
    Swiech, Lukasz
    Heidenreich, Matthias
    Habib, Naomi
    Zhang, Feng
    MOLECULAR THERAPY, 2014, 22 : S289 - S289
  • [43] Enzymatic tools for mitochondrial genome manipulation
    Rimskaya, Beatrisa
    Shebanov, Nikita
    Entelis, Nina
    Mazunin, Ilya
    BIOCHIMIE, 2025, 229 : 114 - 128
  • [45] The power and versatility of genome editing tools in crop improvement
    Lanqin Xia
    Kejian Wang
    Jian-Kang Zhu
    JournalofIntegrativePlantBiology, 2021, 63 (09) : 1591 - 1594
  • [46] Delivery of genome editing tools by bacterial extracellular vesicles
    Liu, Yue
    Smid, Eddy J.
    Abee, Tjakko
    Notebaart, Richard A.
    MICROBIAL BIOTECHNOLOGY, 2019, 12 (01): : 71 - 73
  • [47] Genome-editing tools for stem cell biology
    E A Vasileva
    O U Shuvalov
    A V Garabadgiu
    G Melino
    N A Barlev
    Cell Death & Disease, 2015, 6 : e1831 - e1831
  • [48] Advances and Perspectives for Genome Editing Tools of Corynebacterium glutamicum
    Wang, Qingzhuo
    Zhang, Jiao
    Al Makishah, Naief H.
    Sun, Xiaoman
    Wen, Zhiqiang
    Jiang, Yu
    Yang, Sheng
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [49] Computational Tools and Resources for CRISPR/Cas Genome Editing
    Li, Chao
    Chu, Wen
    Gill, Rafaqat Ali
    Sang, Shifei
    Shi, Yuqin
    Hu, Xuezhi
    Yang, Yuting
    Zaman, Qamar U.
    Zhang, Baohong
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 108 - 126
  • [50] The Gene Sculpt Suite: a set of tools for genome editing
    Mann, Carla M.
    Martinez-Galvez, Gabriel
    Welker, Jordan M.
    Wierson, Wesley A.
    Ata, Hirotaka
    Almeida, Maira P.
    Clark, Karl J.
    Essner, Jeffrey J.
    McGrail, Maura
    Ekker, Stephen C.
    Dobbs, Drena
    NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W175 - W182