Tools for editing the mammalian mitochondrial genome

被引:2
|
作者
Moraes, Carlos T. [1 ]
机构
[1] Univ Miami, Miller Sch Med, 1600 NW 10th Ave,Room 7044, Miami, FL 33136 USA
关键词
mitochondrial manipulation; genetic enhancements; TALEN technology; gene modification; base editing; DNA COPY NUMBER; MTDNA HETEROPLASMY; SELECTIVE ELIMINATION; MANIPULATION; DELIVERY; SEQUENCE;
D O I
10.1093/hmg/ddae037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.
引用
收藏
页码:R92 / R99
页数:8
相关论文
共 50 条
  • [31] The adaptive evolution of the mammalian mitochondrial genome
    Rute R da Fonseca
    Warren E Johnson
    Stephen J O'Brien
    Maria João Ramos
    Agostinho Antunes
    BMC Genomics, 9
  • [32] The adaptive evolution of the mammalian mitochondrial genome
    da Fonseca, Rute R.
    Johnson, Warren E.
    O'Brien, Stephen J.
    Ramos, Maria Joao
    Antunes, Agostinho
    BMC GENOMICS, 2008, 9 (1)
  • [33] Organization and expression of the mammalian mitochondrial genome
    Rackham, Oliver
    Filipovska, Aleksandra
    NATURE REVIEWS GENETICS, 2022, 23 (10) : 606 - 623
  • [34] Organization and expression of the mammalian mitochondrial genome
    Oliver Rackham
    Aleksandra Filipovska
    Nature Reviews Genetics, 2022, 23 : 606 - 623
  • [35] Mitochondrial genome plasticity of mammalian species
    Biro, Balint
    Gal, Zoltan
    Fekete, Zsofia
    Klecska, Eszter
    Hoffmann, Orsolya Ivett
    BMC GENOMICS, 2024, 25 (01)
  • [36] Genome Editing of Plant Mitochondrial and Chloroplast Genomes
    Arimura, Shin-ichi
    Nakazato, Issei
    PLANT AND CELL PHYSIOLOGY, 2024, 65 (04) : 477 - 483
  • [37] Mitochondrial genome editing: strategies, challenges, and applications
    Lim, Kayeong
    BMB REPORTS, 2024, 57 (01) : 19 - 29
  • [38] Current Progress of Mitochondrial Genome Editing by CRISPR
    Yin, Tao
    Luo, Junjie
    Huang, Danqiong
    Li, Hui
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [39] Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs
    Castillo, Santiago R.
    Simone, Brandon W.
    Clark, Karl J.
    Devaux, Patricia
    Ekker, Stephen C.
    HUMAN GENE THERAPY, 2024, 35 (19-20) : 798 - 813
  • [40] BACTERIAL TOXIN ENABLES MITOCHONDRIAL GENOME EDITING
    Nelson, Roxanne
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2020, 182 (11) : 2476 - 2477