S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity

被引:19
|
作者
Wang, Haitao [1 ]
Yu, Lianglang [1 ]
Jiang, Jizhou [1 ]
Arramel [2 ]
Zou, Jing [1 ]
机构
[1] Wuhan Inst Technol, Engn Res Ctr Phosphorus Resources Dev & Utilizat, Sch Chem & Environm Engn,Minist Educ,Key Lab Gree, Sch Environm Ecol & Biol Engn,Novel Catalyt Mat H, Wuhan 430205, Peoples R China
[2] Nano Ctr Indonesia, Jalan Raya PUSPIPTEK, South Tangerang 15314, Banten, Indonesia
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Theoretical prediction; S-doping; g-C3N4; Hydrogen evolution; Photocatalysis; DOPED CARBON NITRIDE; SCHEME HETEROJUNCTION; NANOSHEETS;
D O I
10.3866/PKU.WHXB202305047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of solar energy as an inexhaustible resource to conduct photocatalytic water splitting in hydrogen (H-2) production can alleviate the worldwide energy crisis and achieve carbon neutrality. However, research in photocatalytic H-2 evolution reaction (HER) is extremely challenging in terms of exploring the current development of an active and durable graphitic carbon nitride (g-C3N4)-based photocatalyst. Several parameters of pristine g-C3N4 require structural, physical, and chemical improvements, such as optimization of the surface area, electron transfer, and photo-generated carrier recombination, to render the g-C3N4 suitable for photocatalysis. In this study, the development of an efficient and robust S-doped g-C3N4(S-g-CN) catalyst was pursued that involves doping nitrogen (N) active sites of g-C3N4 with sulfur (S) dopants via one-step calcination of the sulphate and melamine precursors. A combination of structural and spectroscopic fingerprints was established to distinctly determine the realization of S-doping onto the g-C3N4 structure. We obtained the optimum Gibbs free energy of adsorbed hydrogen (Delta G(H*)) for S-g-CN at the S active sites, which is nearly zero (similar to 0.26 eV), suggesting that the filled S dopants play an essential role in optimizing the adsorption and desorption processes of H-active intermediates. The results of atomic force and transmission electron microscopies (AFM and TEM) demonstrated that the produced S-g-CN catalyst has an ultrathin nanosheet structure with a lamellar thickness of approximately 2.5 nm. A subsequent N-2 sorption isotherms test revealed a substantial increase in the specific surface area after the integration of S dopants into the g-C3N4 nanoskeleton. Moreover, the incorporation of S atoms into the g-C3N4 significantly increased the carrier concentrations, improving the transfer, separation, as well as the oxidation and reduction abilities of the photo-generated electron-hole pairs. Leveraging the favorable material characteristics of the S-doped two-dimensional nanostructures, the resulting S-g-CN achieved a high H-2 evolution rate of 4923 mu molg(-1)h(-1), which is 28 times higher than that of the pristine g-C3N4. Additionally, the developed S-g-CN possessed a high apparent quantum efficiency (3.64%) at visible-light irradiation. When compared to the recently reported S-doped g-C3N4-based photocatalysts, our optimal S-g-CN catalyst (S-CN1.0) showed one of the best HER catalytic activities. Our rational design is based on an effective strategy that not only explored a promising HER photocatalyst but also aimed to pave the way for the development of other high-performance g-C3N4 based catalysts.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Faster Electron Injection and More Active Sites for Efficient Photocatalytic H2 Evolution in g-C3N4/MoS2 Hybrid
    Shi, Xiaowei
    Fujitsuka, Mamoru
    Kim, Sooyeon
    Majima, Tetsuro
    SMALL, 2018, 14 (11)
  • [42] Pt/g-C3N4 composites for photocatalytic H2 production and •OH formation
    Qi, Kezhen
    Liu, Shu-yuan
    Wang, Ruidan
    Chen, Zhe
    Selvaraj, Rengaraj
    DESALINATION AND WATER TREATMENT, 2019, 154 : 312 - 319
  • [43] Nanosheet-Stacked g-C3N4 Tubes with Carbon Vacancies for Enhanced Photocatalytic H2 Evolution
    Lu, Jin
    Li, Zhaoqian
    Wu, Bo
    Jiang, Zhiqiang
    Pei, Chonghua
    ACS APPLIED NANO MATERIALS, 2025, 8 (12) : 6133 - 6143
  • [44] Fluorinated conjugated poly(benzotriazole)/g-C3N4 heterojunctions for significantly enhancing photocatalytic H2 evolution
    Ye, Haonan
    Wang, Zhiqiang
    Yu, Fengtao
    Zhang, Shicong
    Kong, Kangyi
    Gong, Xueqing
    Hua, Jianli
    Tian, He
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 267
  • [45] Synthesis of g-C3N4 from Various Precursors for Photocatalytic H2 Evolution under the Visible Light
    Xia, Pengfei
    Li, Guojing
    Li, Xiaowei
    Yuan, Shuhua
    Wang, Kang
    Huang, Dingwang
    Ji, Yuanpeng
    Dong, Yunfa
    Wu, Xiaoqiang
    Zhu, Linyu
    He, Weidong
    Qiao, Liang
    CRYSTALS, 2022, 12 (12)
  • [46] Selective deposition of cocatalyst NiS on a g-C3N4/ZnIn2S4 heterojunction for exceptional photocatalytic H2 evolution
    Xia, Yuzhou
    He, Yunfeng
    Liu, Xiyao
    Huang, Renkun
    Liang, Ruowen
    Chen, Feng
    Yan, Guiyang
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (30) : 14502 - 14509
  • [47] Structural Distortion of g-C3N4 Induced by a Schiff Base Reaction for Efficient Photocatalytic H2 Evolution
    Yang, Chunxia
    Cao, Hailong
    Su, Fengyun
    Tian, Mengzhen
    Xie, Haiquan
    Zhang, Yezhen
    Jin, Xiaoli
    Li, Xin
    Li, Zhengdao
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (18)
  • [48] Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency
    Wang, Xiao-jing
    Tian, Xiao
    Li, Fa-tang
    Li, Yu-pei
    Zhao, Jun
    Hao, Ying-juan
    Liu, Ying
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (06) : 3888 - 3895
  • [49] Enhanced photocatalytic H2 evolution of ultrathin g-C3N4 nanosheets via surface shuttle redox
    Lin, Peiyao
    Shen, Jun
    Tang, Hua
    Zulfiqar
    Lin, Zixia
    Jiang, Yan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 810
  • [50] Au Nanoparticles Embedded in Carbon Self-Doping g-C3N4: Facile Photodeposition Method for Superior Photocatalytic H2 Evolution
    Li, Lingfeng
    Zhang, Quan
    Wang, Xiaohao
    Zhang, Juhua
    Gu, Huajun
    Dai, Wei-Lin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (20): : 10964 - 10973