S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity

被引:19
|
作者
Wang, Haitao [1 ]
Yu, Lianglang [1 ]
Jiang, Jizhou [1 ]
Arramel [2 ]
Zou, Jing [1 ]
机构
[1] Wuhan Inst Technol, Engn Res Ctr Phosphorus Resources Dev & Utilizat, Sch Chem & Environm Engn,Minist Educ,Key Lab Gree, Sch Environm Ecol & Biol Engn,Novel Catalyt Mat H, Wuhan 430205, Peoples R China
[2] Nano Ctr Indonesia, Jalan Raya PUSPIPTEK, South Tangerang 15314, Banten, Indonesia
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Theoretical prediction; S-doping; g-C3N4; Hydrogen evolution; Photocatalysis; DOPED CARBON NITRIDE; SCHEME HETEROJUNCTION; NANOSHEETS;
D O I
10.3866/PKU.WHXB202305047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of solar energy as an inexhaustible resource to conduct photocatalytic water splitting in hydrogen (H-2) production can alleviate the worldwide energy crisis and achieve carbon neutrality. However, research in photocatalytic H-2 evolution reaction (HER) is extremely challenging in terms of exploring the current development of an active and durable graphitic carbon nitride (g-C3N4)-based photocatalyst. Several parameters of pristine g-C3N4 require structural, physical, and chemical improvements, such as optimization of the surface area, electron transfer, and photo-generated carrier recombination, to render the g-C3N4 suitable for photocatalysis. In this study, the development of an efficient and robust S-doped g-C3N4(S-g-CN) catalyst was pursued that involves doping nitrogen (N) active sites of g-C3N4 with sulfur (S) dopants via one-step calcination of the sulphate and melamine precursors. A combination of structural and spectroscopic fingerprints was established to distinctly determine the realization of S-doping onto the g-C3N4 structure. We obtained the optimum Gibbs free energy of adsorbed hydrogen (Delta G(H*)) for S-g-CN at the S active sites, which is nearly zero (similar to 0.26 eV), suggesting that the filled S dopants play an essential role in optimizing the adsorption and desorption processes of H-active intermediates. The results of atomic force and transmission electron microscopies (AFM and TEM) demonstrated that the produced S-g-CN catalyst has an ultrathin nanosheet structure with a lamellar thickness of approximately 2.5 nm. A subsequent N-2 sorption isotherms test revealed a substantial increase in the specific surface area after the integration of S dopants into the g-C3N4 nanoskeleton. Moreover, the incorporation of S atoms into the g-C3N4 significantly increased the carrier concentrations, improving the transfer, separation, as well as the oxidation and reduction abilities of the photo-generated electron-hole pairs. Leveraging the favorable material characteristics of the S-doped two-dimensional nanostructures, the resulting S-g-CN achieved a high H-2 evolution rate of 4923 mu molg(-1)h(-1), which is 28 times higher than that of the pristine g-C3N4. Additionally, the developed S-g-CN possessed a high apparent quantum efficiency (3.64%) at visible-light irradiation. When compared to the recently reported S-doped g-C3N4-based photocatalysts, our optimal S-g-CN catalyst (S-CN1.0) showed one of the best HER catalytic activities. Our rational design is based on an effective strategy that not only explored a promising HER photocatalyst but also aimed to pave the way for the development of other high-performance g-C3N4 based catalysts.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Boosting photocatalytic H2 evolution on g-C3N4 by modifying covalent organic frameworks (COFs)
    Luo, Maolan
    Yang, Qing
    Liu, Kewei
    Cao, Hongmei
    Yan, Hongjian
    CHEMICAL COMMUNICATIONS, 2019, 55 (41) : 5829 - 5832
  • [32] Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine
    Zhong, Yujiao
    Wang, Zhiqiang
    Feng, Jianyong
    Yan, Shicheng
    Zhang, Haitao
    Li, Zhaosheng
    Zou, Zhigang
    APPLIED SURFACE SCIENCE, 2014, 295 : 253 - 259
  • [33] Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation
    Xia, Xiang
    Xie, Cong
    Xu, Baogang
    Ji, Xingshuai
    Gao, Guanggang
    Yang, Ping
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 105 : 303 - 312
  • [34] S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution
    Wang, Chenxuan
    Zhang, Wenjuan
    Fan, Jun
    Sun, Wenjuan
    Liu, Enzhou
    CERAMICS INTERNATIONAL, 2021, 47 (21) : 30194 - 30202
  • [35] NiS and graphene as dual cocatalysts for the enhanced photocatalytic H2 production activity of g-C3N4
    Chen, Zhe
    Yang, Shuibin
    Tian, Zhengfang
    Zhu, Bicheng
    APPLIED SURFACE SCIENCE, 2019, 469 : 657 - 665
  • [36] Fabrication of NiCo2S4/N-deficient g-C3N4 for efficient photocatalytic H2 production
    Yang, Tao
    Hu, Xiaoyun
    Fan, Jun
    Sun, Tao
    Liu, Enzhou
    SURFACES AND INTERFACES, 2023, 42
  • [37] A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation
    Liu, Yujie
    Liu, Haixia
    Zhou, Huamin
    Li, Tianduo
    Zhang, Lunan
    APPLIED SURFACE SCIENCE, 2019, 466 : 133 - 140
  • [38] Bimetallic PtNi/g-C3N4 nanotubes with enhanced photocatalytic activity for H2 evolution under visible light irradiation
    Peng, Wen
    Zhang, Shi-Shen
    Shao, Yi-Biao
    Huang, Jian-Hua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (49) : 22215 - 22225
  • [39] Novel g-C3N4/CoO Nanocomposites with Significantly Enhanced Visible-Light Photocatalytic Activity for H2 Evolution
    Mao, Zhiyong
    Chen, Jingjing
    Yang, Yanfang
    Wang, Dajian
    Bie, Lijian
    Fahlman, Bradley D.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (14) : 12427 - 12435
  • [40] Surface N modified 2D g-C3N4 nanosheets derived from DMF for photocatalytic H2 evolution
    Hao, Quanguo
    Song, Yanhua
    Ji, Haiyan
    Mo, Zhao
    She, Xiaojie
    Deng, Jiujun
    Muhmood, Tahir
    Wu, Xiangyang
    Yuan, Shouqi
    Xu, Hui
    Li, Huaming
    APPLIED SURFACE SCIENCE, 2018, 459 : 845 - 852