Convergence of limit shapes for 2D near-critical first-passage percolation

被引:0
|
作者
Yao, Chang -Long [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
First-passage percolation; Near-critical percolation; Scaling limit; Correlation length; Shape theorem; SCALING LIMITS; ENSEMBLES; EXPONENTS;
D O I
10.1214/22-AIHP1349
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bernoulli first-passage percolation on the triangular lattice in which sites have 0 and 1 passage times with probability p and 1 - p, respectively. For each p is an element of (0, pc), let B(p) be the limit shape in the classical "shape theorem", and let L(p) be the correlation length. We show that as p up arrow pc, the rescaled limit shape L(p)-1B(p) converges to a Euclidean disk. This improves a result of Chayes et al. [J. Stat. Phys. 45 (1986) 933-951]. The proof relies on the scaling limit of near-critical percolation established by Garban et al. [J. Eur. Math. Soc. 20 (2018) 1195-1268], and uses the construction of the collection of continuum clusters in the scaling limit introduced by Camia et al. [Springer Proceedings in Mathematics & Statistics, 299 (2019) 44-89].
引用
收藏
页码:1295 / 1333
页数:39
相关论文
共 50 条
  • [1] Asymptotics for 2D critical and near-critical first-passage percolation
    Chang-Long Yao
    Probability Theory and Related Fields, 2019, 175 : 975 - 1019
  • [2] Asymptotics for 2D critical and near-critical first-passage percolation
    Yao, Chang-Long
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 175 (3-4) : 975 - 1019
  • [3] The scaling limit geometry of near-critical 2D percolation
    Camia, Federico
    Fontes, Luiz Renato G.
    Newman, Charles M.
    JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (5-6) : 1159 - 1175
  • [4] The Scaling Limit Geometry of Near-Critical 2D Percolation
    Federico Camia
    Luiz Renato G. Fontes
    Charles M. Newman
    Journal of Statistical Physics, 2006, 125 : 1155 - 1171
  • [5] Comparison of limit shapes for Bernoulli first-passage percolation
    Kubota, Naoki
    Takei, Masato
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2022, 14 (01):
  • [6] UNIVERSALITY OF THE TIME CONSTANT FOR 2D CRITICAL FIRST-PASSAGE PERCOLATION
    Damron, Michael
    Hanson, Jack
    Lam, Wai -Kit
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (03): : 1701 - 1731
  • [7] Superlinearity of Geodesic Length in 2D Critical First-Passage Percolation
    Damron, Michael
    Tang, Pengfei
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - II: BROWNIAN WEB AND PERCOLATION, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 299 : 101 - 122
  • [8] Limit theorems for critical first-passage percolation on the triangular lattice
    Yao, Chang-Long
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (02) : 445 - 460
  • [9] ASYMPTOTICS FOR 2D CRITICAL FIRST PASSAGE PERCOLATION
    Damron, Michael
    Lam, Wai-Kit
    Wang, Xuan
    ANNALS OF PROBABILITY, 2017, 45 (05): : 2941 - 2970
  • [10] A central limit theorem for ''critical'' first-passage percolation in two dimensions
    Kesten, H
    Zhang, Y
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 107 (02) : 137 - 160