Predicting Blood Glucose Levels Using LSTM

被引:0
|
作者
Butunoi, Bogdan-Petru [1 ]
Negru, Viorel [1 ,2 ]
机构
[1] West Univ Timisoara, Fac Math & Informat, Comp Sci Dept, V Parvan 4, Timisoara, Romania
[2] ICAM Adv Environm Res Inst, Timisoara, Romania
关键词
artificial intelligence; data cleansing; blood glucose; timeseries; LSTM; data quality;
D O I
10.1109/SYNASC61333.2023.00050
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study explores the application of Long Short-Term Memory algorithms to predict blood glucose levels, leveraging sequence-based data from a Dexcom G6 Continuous Glucose Monitoring sensor. This research methodically details a rigorous data cleansing process that transforms raw glucose readings into meaningful, sequenced input for Long Short-Term Memory models. By feeding the Long Short-Term Memory with structured data in a variety of volumes, it was analyzed and discussed how the quantity of information influences the accuracy of glucose level predictions. This investigation holds significant implications for the advancement of personalized glycemic control, potentially improving the day-to-day management and overall quality of life for individuals living with diabetes.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 50 条
  • [11] A Machine Learning Approach for Blood Glucose Level Prediction Using a LSTM Network
    Gomez-Castillo, Nayeli Y.
    Cajilima-Cardenaz, Pedro E.
    Zhinin-Vera, Luis
    Maldonado-Cuascota, Belen
    Dominguez, Diana Leon
    Pineda-Molina, Gabriela
    Hidalgo-Parra, Andres A.
    Gonzales-Zubiate, Fernando A.
    [J]. SMART TECHNOLOGIES, SYSTEMS AND APPLICATIONS, SMARTTECH-IC 2021, 2022, 1532 : 99 - 113
  • [12] Prediction of Blood Glucose Levels in Patients with Type 1 Diabetes via LSTM Neural Networks
    Rodriguez Leon, Ciro
    Banos, Oresti
    Fernandez Mora, Oscar
    Martinez Bedmar, Alex
    Rufo Jimenez, Fernando
    Villalonga, Claudia
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 563 - 573
  • [13] Strength of Family History in Predicting Levels of Blood Pressure, Plasma Glucose and Cholesterol
    Wandeler, G.
    Paccaud, F.
    Vollenweider, P.
    Waeber, G.
    Mooser, V.
    Bochud, M.
    [J]. PUBLIC HEALTH GENOMICS, 2010, 13 (03) : 143 - 154
  • [14] Predicting Blood Glucose Levels around Meals for Patients with Type I Diabetes
    Cameron, Fraser
    Niemeyer, Guenter
    [J]. PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2010, VOL 1, 2010, : 289 - 296
  • [15] Using Transmission Properties to Determine Blood Glucose Levels
    Smilkstein, Tina
    Siu, Ka
    Meng, Fanfu
    Schneider, Sophie
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 563 - 566
  • [16] Predicting continuous blood glucose level using deep learning
    Shahid, Safiullah
    Hussain, Shujaat
    Khan, Wajahat Ali
    [J]. COMPANION PROCEEDINGS OF THE 14TH IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC'21 COMPANION), 2021,
  • [17] PERSONALIZED BLOOD GLUCOSE FORECASTING FROM CGM DATA USING AN INCREMENTALLY RETRAINED LSTM
    Shen, Y.
    Kleinberg, S.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2023, 25 : A140 - A140
  • [18] Predicting Clinical Dementia Rating Using Blood RNA Levels
    Miller, Justin B.
    Kauwe, John S. K.
    [J]. GENES, 2020, 11 (06) : 1 - 9
  • [19] Predicting Blood Glucose Levels with LMU Recurrent Neural Networks: A Novel Computational Model
    Floris, Ladislav
    Vasata, Daniel
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, PT I, AIME 2024, 2024, 14844 : 117 - 127
  • [20] Using simulation to study the effect of stress on blood glucose levels
    Hildebrand, GE
    Mathews, EH
    [J]. DIABETES, 2004, 53 : A516 - A517