PERSONALIZED BLOOD GLUCOSE FORECASTING FROM CGM DATA USING AN INCREMENTALLY RETRAINED LSTM

被引:0
|
作者
Shen, Y. [1 ]
Kleinberg, S. [1 ]
机构
[1] Stevens Inst Technol, Comp Sci, Hoboken, NJ USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
452
引用
收藏
页码:A140 / A140
页数:1
相关论文
共 50 条
  • [1] Personalized glucose forecasting for type 2 diabetes using data assimilation
    Albers, David J.
    Levine, Matthew
    Gluckman, Bruce
    Ginsberg, Henry
    Hripcsak, George
    Mamykina, Lena
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (04)
  • [2] PERSONALIZED FORECASTING OF SEVERE HYPOGLYCEMIA USING REAL-TIME CONTINUOUS GLUCOSE MONITORING (CGM) DATA IN PATIENTS WITH TYPE 2 DIABETES (T2DM)
    Ma, S.
    Kirsh, T.
    Chow, L.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2021, 23 : A113 - A114
  • [3] Field Data Forecasting Using LSTM and Bi-LSTM Approaches
    Suebsombut, Paweena
    Sekhari, Aicha
    Sureephong, Pradorn
    Belhi, Abdelhak
    Bouras, Abdelaziz
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [4] Predicting Blood Glucose Levels Using LSTM
    Butunoi, Bogdan-Petru
    Negru, Viorel
    [J]. 2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 293 - 299
  • [5] Predicting Blood Glucose using an LSTM Neural Network
    El Idriss, Touria
    Idri, Ali
    Abnane, Ibtissam
    Bakkoury, Zohra
    [J]. PROCEEDINGS OF THE 2019 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2019, : 35 - 41
  • [6] Personalized Diabetes Management Using Data from Continuous Glucose Monitors
    Miller, Daniel R.
    Ward, Andrew T.
    Maahs, David M.
    Scheinker, David
    [J]. DIABETES, 2019, 68
  • [7] EVALUATION OF THE PROFILE OF BLOOD GLUCOSE USING CGM IN THE POPULATION WITH NORMAL ORAL GLUCOSE TOLERANCE TEST
    Sofizadeh, S.
    Pehrsson, A.
    Olafsdottir, A.
    Pivodic, A.
    Lind, M.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2020, 22 : A219 - A219
  • [8] Strategies of Multi-Step-ahead Forecasting for Blood Glucose Level using LSTM Neural Networks: A Comparative Study
    El Idrissi, Touria
    Idri, Ali
    Kadi, Ilham
    Bakkoury, Zohra
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 5: HEALTHINF, 2020, : 337 - 344
  • [9] Personalized glucose forecasting for type 2 diabetes using data assimilation (vol 13, e1005232, 2017)
    Albers, David J.
    Levine, Matthew
    Gluckman, Bruce
    Ginsberg, Henry
    Hripcsak, George
    Mamykina, Lena
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (08)
  • [10] SIMULATING THE SAFETY OF DOSING DECISIONS USING CGM: A DIRECT COMPARISON OF DEXCOM CGM SYSTEMS USING 505 SOFTWARE ALGORITHM AND BLOOD GLUCOSE MEASUREMENTS
    Jepson, L.
    Bhavaraju, N.
    Price, D.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2016, 18 : A74 - A74