Recent advances on federated learning: A systematic survey

被引:13
|
作者
Liu, Bingyan [1 ]
Lv, Nuoyan [1 ]
Guo, Yuanchun [1 ]
Li, Yawen [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100871, Peoples R China
关键词
Artificial intelligence; Federated learning; Survey; CLIENT SELECTION; FAIRNESS; GAME;
D O I
10.1016/j.neucom.2024.128019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning has emerged as an effective paradigm to achieve privacy-preserving collaborative learning among different parties. Compared to traditional centralized learning that requires collecting data from each party, in federated learning, only the locally trained models or computed gradients are exchanged, without exposing any data information. As a result, it is able to protect privacy to some extent. In recent years, federated learning has become more and more prevalent and there have been many surveys for summarizing related methods in this hot research topic. However, most of them focus on a specific perspective or lack the latest research progress. In this paper, we provide a systematic survey on federated learning, aiming to review the recent advanced federated methods and applications from different aspects. Specifically, this paper includes four major contributions. First, we present a new taxonomy of federated learning in terms of the pipeline and challenges in federated scenarios. Second, we summarize federated learning methods into several categories and briefly introduce the state-of-the-art methods under these categories. Third, we overview some prevalent federated learning frameworks and introduce their features. Finally, some potential deficiencies of current methods and several future directions are discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A survey on security and privacy of federated learning
    Mothukuri, Viraaji
    Parizi, Reza M.
    Pouriyeh, Seyedamin
    Huang, Yan
    Dehghantanha, Ali
    Srivastava, Gautam
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 115 : 619 - 640
  • [42] A survey on federated learning: challenges and applications
    Jie Wen
    Zhixia Zhang
    Yang Lan
    Zhihua Cui
    Jianghui Cai
    Wensheng Zhang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 513 - 535
  • [43] From federated learning to federated neural architecture search: a survey
    Hangyu Zhu
    Haoyu Zhang
    Yaochu Jin
    Complex & Intelligent Systems, 2021, 7 : 639 - 657
  • [44] Poisoning Attacks in Federated Learning: A Survey
    Xia, Geming
    Chen, Jian
    Yu, Chaodong
    Ma, Jun
    IEEE ACCESS, 2023, 11 : 10708 - 10722
  • [45] Privacy and Security in Federated Learning: A Survey
    Gosselin, Remi
    Vieu, Loic
    Loukil, Faiza
    Benoit, Alexandre
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [46] Federated learning for biometric recognition: a survey
    Guo, Jian
    Mu, Hengyu
    Liu, Xingli
    Ren, Hengyi
    Han, Chong
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (08)
  • [47] A survey on federated learning: challenges and applications
    Wen, Jie
    Zhang, Zhixia
    Lan, Yang
    Cui, Zhihua
    Cai, Jianghui
    Zhang, Wensheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (02) : 513 - 535
  • [48] Federated Learning for the Metaverse: A Short Survey
    Yenduri, Gokul
    Reddy, Dasaradharami K.
    Srivastava, Gautam
    Supriya, Y.
    Ramalingam, M.
    Gadekallu, Thippa Reddy
    Awaysheh, Feras M.
    2023 INTERNATIONAL CONFERENCE ON INTELLIGENT METAVERSE TECHNOLOGIES & APPLICATIONS, IMETA, 2023, : 231 - 240
  • [49] Survey of Personalization Techniques for Federated Learning
    Kulkarni, Viraj
    Kulkarni, Milind
    Pant, Aniruddha
    PROCEEDINGS OF THE 2020 FOURTH WORLD CONFERENCE ON SMART TRENDS IN SYSTEMS, SECURITY AND SUSTAINABILITY (WORLDS4 2020), 2020, : 794 - 797
  • [50] Vertical Federated Learning: Concepts, Advances, and Challenges
    Liu, Yang
    Kang, Yan
    Zou, Tianyuan
    Pu, Yanhong
    He, Yuanqin
    Ye, Xiaozhou
    Ouyang, Ye
    Zhang, Ya-Qin
    Yang, Qiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 3615 - 3634