Recent advances on federated learning: A systematic survey

被引:13
|
作者
Liu, Bingyan [1 ]
Lv, Nuoyan [1 ]
Guo, Yuanchun [1 ]
Li, Yawen [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100871, Peoples R China
关键词
Artificial intelligence; Federated learning; Survey; CLIENT SELECTION; FAIRNESS; GAME;
D O I
10.1016/j.neucom.2024.128019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning has emerged as an effective paradigm to achieve privacy-preserving collaborative learning among different parties. Compared to traditional centralized learning that requires collecting data from each party, in federated learning, only the locally trained models or computed gradients are exchanged, without exposing any data information. As a result, it is able to protect privacy to some extent. In recent years, federated learning has become more and more prevalent and there have been many surveys for summarizing related methods in this hot research topic. However, most of them focus on a specific perspective or lack the latest research progress. In this paper, we provide a systematic survey on federated learning, aiming to review the recent advanced federated methods and applications from different aspects. Specifically, this paper includes four major contributions. First, we present a new taxonomy of federated learning in terms of the pipeline and challenges in federated scenarios. Second, we summarize federated learning methods into several categories and briefly introduce the state-of-the-art methods under these categories. Third, we overview some prevalent federated learning frameworks and introduce their features. Finally, some potential deficiencies of current methods and several future directions are discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Integration of blockchain and federated learning for Internet of Things: Recent advances and future challenges
    Ali, Mansoor
    Karimipour, Hadis
    Tariq, Muhammad
    COMPUTERS & SECURITY, 2021, 108
  • [22] Recent Advances in Baggage Threat Detection: A Comprehensive and Systematic Survey
    Velayudhan, Divya
    Hassan, Taimur
    Damiani, Ernesto
    Werghi, Naoufel
    ACM COMPUTING SURVEYS, 2023, 55 (08)
  • [23] A Survey on Deep Active Learning: Recent Advances and New Frontiers
    Li, Dongyuan
    Wang, Zhen
    Chen, Yankai
    Jiang, Renhe
    Ding, Weiping
    Okumura, Manabu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 21
  • [24] A Systematic and Comprehensive Survey of Recent Advances in Intrusion Detection Systems Using Machine Learning: Deep Learning, Datasets, and Attack Taxonomy
    Momand, Asadullah
    Jan, Sana Ullah
    Ramzan, Naeem
    JOURNAL OF SENSORS, 2023, 2023
  • [25] Federated Learning for Metaverse: A Survey
    Chen, Yao
    Huang, Shan
    Gan, Wensheng
    Huang, Gengsen
    Wu, Yongdong
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 1151 - 1160
  • [26] Bayesian Federated Learning: A Survey
    Cao, Longbing
    Chen, Hui
    Fan, Xuhui
    Gama, Joao
    Ong, Yew-Soon
    Kumar, Vipin
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 7233 - 7242
  • [27] Multimodal Federated Learning: A Survey
    Che, Liwei
    Wang, Jiaqi
    Zhou, Yao
    Ma, Fenglong
    SENSORS, 2023, 23 (15)
  • [28] Recent advances in deep learning models: a systematic literature review
    Malhotra, Ruchika
    Singh, Priya
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 44977 - 45060
  • [29] Recent advances in deep learning models: a systematic literature review
    Ruchika Malhotra
    Priya Singh
    Multimedia Tools and Applications, 2023, 82 : 44977 - 45060
  • [30] Advances and Open Problems in Federated Learning
    Kairouz, Peter
    McMahan, H. Brendan
    Avent, Brendan
    Bellet, Aurelien
    Bennis, Mehdi
    Bhagoji, Arjun Nitin
    Bonawitz, Kallista
    Charles, Zachary
    Cormode, Graham
    Cummings, Rachel
    D'Oliveira, Rafael G. L.
    Eichner, Hubert
    El Rouayheb, Salim
    Evans, David
    Gardner, Josh
    Garrett, Zachary
    Gascon, Adria
    Ghazi, Badih
    Gibbons, Phillip B.
    Gruteser, Marco
    Harchaoui, Zaid
    He, Chaoyang
    He, Lie
    Huo, Zhouyuan
    Hutchinson, Ben
    Hsu, Justin
    Jaggi, Martin
    Javidi, Tara
    Joshi, Gauri
    Khodak, Mikhail
    Konecny, Jakub
    Korolova, Aleksandra
    Koushanfar, Farinaz
    Koyejo, Sanmi
    Lepoint, Tancrede
    Liu, Yang
    Mittal, Prateek
    Mohri, Mehryar
    Nock, Richard
    Ozgur, Ayfer
    Pagh, Rasmus
    Qi, Hang
    Ramage, Daniel
    Raskar, Ramesh
    Raykova, Mariana
    Song, Dawn
    Song, Weikang
    Stich, Sebastian U.
    Sun, Ziteng
    Suresh, Ananda Theertha
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2): : 1 - 210