Prediction of disease-free survival for precision medicine using cooperative learning on multi-omic data

被引:1
|
作者
Hahn, Georg [1 ]
Prokopenko, Dmitry [2 ]
Hecker, Julian [3 ]
Lutz, Sharon M. [1 ]
Mullin, Kristina [2 ]
Sejour, Leinal
Hide, Winston [4 ]
Vlachos, Ioannis [4 ]
DeSantis, Stacia [5 ]
Tanzi, Rudolph E. [2 ]
Lange, Christoph [1 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[2] Massachusetts Gen Hosp MGH, McCance Ctr Brain Hlth, Dept Neurol, Genet & Aging Res Unit, Boston, MA 02114 USA
[3] Brigham & Womens Hosp, Harvard Med Sch, Dept Med, Cardiovasc Div, 75 Francis St, Boston, MA 02115 USA
[4] Beth Israel Deaconess Med Ctr, Dept Pathol, 330 Brookline Ave, Boston, MA 02215 USA
[5] Univ Texas Hlth Sci Ctr Houston, 1200 Pressler St,Houston Campus, Houston, TX 77030 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Alzheimer; cooperative learning; Cox proportional hazard; lasso; penalized regression; precision medicine; survival; INSIGHTS; RISK;
D O I
10.1093/bib/bbae267
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In precision medicine, both predicting the disease susceptibility of an individual and forecasting its disease-free survival are areas of key research. Besides the classical epidemiological predictor variables, data from multiple (omic) platforms are increasingly available. To integrate this wealth of information, we propose new methodology to combine both cooperative learning, a recent approach to leverage the predictive power of several datasets, and polygenic hazard score models. Polygenic hazard score models provide a practitioner with a more differentiated view of the predicted disease-free survival than the one given by merely a point estimate, for instance computed with a polygenic risk score. Our aim is to leverage the advantages of cooperative learning for the computation of polygenic hazard score models via Cox's proportional hazard model, thereby improving the prediction of the disease-free survival. In our experimental study, we apply our methodology to forecast the disease-free survival for Alzheimer's disease (AD) using three layers of data. One layer contains epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status and 10 leading principal components. Another layer contains selected genomic loci, and the last layer contains methylation data for selected CpG sites. We demonstrate that the survival curves computed via cooperative learning yield an AUC of around $0.7$, above the state-of-the-art performance of its competitors. Importantly, the proposed methodology returns (1) a linear score that can be easily interpreted (in contrast to machine learning approaches), and (2) a weighting of the predictive power of the involved data layers, allowing for an assessment of the importance of each omic (or other) platform. Similarly to polygenic hazard score models, our methodology also allows one to compute individual survival curves for each patient.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Iterative single-cell multi-omic integration using online learning
    Chao Gao
    Jialin Liu
    April R. Kriebel
    Sebastian Preissl
    Chongyuan Luo
    Rosa Castanon
    Justin Sandoval
    Angeline Rivkin
    Joseph R. Nery
    Margarita M. Behrens
    Joseph R. Ecker
    Bing Ren
    Joshua D. Welch
    Nature Biotechnology, 2021, 39 : 1000 - 1007
  • [32] Iterative single-cell multi-omic integration using online learning
    Gao, Chao
    Liu, Jialin
    Kriebel, April R.
    Preissl, Sebastian
    Luo, Chongyuan
    Castanon, Rosa
    Sandoval, Justin
    Rivkin, Angeline
    Nery, Joseph R.
    Behrens, Margarita M.
    Ecker, Joseph R.
    Ren, Bing
    Welch, Joshua D.
    NATURE BIOTECHNOLOGY, 2021, 39 (08) : 1000 - +
  • [33] Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data
    Wang, Haiyue
    Liu, Zaiyi
    Ma, Xiaoke
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 3134 - 3145
  • [34] Understanding the Molecular Drivers of Disease Heterogeneity in Crohn's Disease Using Multi-omic Data Integration and Network Analysis
    Sudhakar, Padhmanand
    Verstockt, Bram
    Cremer, Jonathan
    Verstockt, Sare
    Sabino, Joao
    Ferrante, Marc
    Vermeire, Severine
    INFLAMMATORY BOWEL DISEASES, 2021, 27 (06) : 870 - 886
  • [35] Investigating Deep Learning Based Breast Cancer Subtyping Using Pan-Cancer and Multi-Omic Data
    Cristovao, Francisco
    Cascianelli, Silvia
    Canakoglu, Arif
    Carman, Mark
    Nanni, Luca
    Pinoli, Pietro
    Masseroli, Marco
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 121 - 134
  • [36] The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines
    Alston, Charlotte L.
    Stenton, Sarah L.
    Hudson, Gavin
    Prokisch, Holger
    Taylor, Robert W.
    JOURNAL OF PATHOLOGY, 2021, 254 (04): : 430 - 442
  • [37] Prediction of Electronic Nicotine Delivery Systems Use in COPDGene Using Multi-Omic Biomarkers
    Gregory, A.
    Xu, Z.
    Pratte, K.
    Berman, S.
    Lichtblau, N.
    Lu, R.
    Chase, R.
    Yun, J.
    Saferali, A.
    Silverman, E.
    Hersh, C.
    Bowler, R.
    Boueiz, A.
    Castaldi, P.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [38] Biomarker Discovery in Parkinson's disease using Machine Learning on Public Multi-omic Datasets: A Pilot Study
    Makarious, M.
    Iwaki, H.
    Blauwendraat, C.
    Leonard, H.
    Hashemi, S.
    Kim, J.
    Van Keuren-Jensen, K.
    Appelmans, D. Craig E.
    Smolensky, L.
    Bookman, M.
    Singleton, A.
    Faghri, F.
    Nalls, M.
    MOVEMENT DISORDERS, 2020, 35 : S207 - S207
  • [39] Disease-free survival in operated patients with nmRCC using machine learning.
    Margue, Gaelle
    Ferrer, Loic
    Etchepare, Guillaume
    Bigot, Pierre
    Bensalah, Karim
    Mejean, Arnaud
    Roupret, Morgan
    Doumerc, Nicolas
    Ingels, Alexandre
    Boissier, Romain
    Pignot, Geraldine
    Parier, Bastien
    Paparel, Philippe
    Waeckel, Thibaut
    Colin, Thierry
    Bernhard, Jean-Christophe
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [40] Identification of shared molecular signatures of ageing and metabolic diseases using multi-omic data
    Michalettou, Theodora Dafni
    Hong, Mun-Gwan
    Fernandez, Juan
    Sharma, Sapna
    Brorsson, Caroline Anna
    Koivula, Robert
    Adamski, Jerzy
    Brunak, Soren
    Dermitzakis, Emmanouil
    Franks, Paul
    McCarthy, Mark
    Pearson, Ewan
    Schwenk, Jochen
    Walker, Mark
    Brown, Andrew
    Vinuela, Ana
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 701 - 701