Iterative single-cell multi-omic integration using online learning

被引:53
|
作者
Gao, Chao [1 ]
Liu, Jialin [1 ]
Kriebel, April R. [1 ]
Preissl, Sebastian [2 ]
Luo, Chongyuan [3 ,4 ,7 ]
Castanon, Rosa [3 ]
Sandoval, Justin [3 ]
Rivkin, Angeline [3 ]
Nery, Joseph R. [3 ]
Behrens, Margarita M. [5 ]
Ecker, Joseph R. [3 ,4 ]
Ren, Bing [2 ]
Welch, Joshua D. [1 ,6 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Calif San Diego, Sch Med, Dept Cellular & Mol Med, Ctr Epigen, La Jolla, CA 92093 USA
[3] Salk Inst Biol Studies, Genom Anal Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[4] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
[5] Salk Inst Biol Studies, Computat Neurobiol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[6] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
[7] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
基金
美国国家卫生研究院;
关键词
EXPRESSION; SEQ;
D O I
10.1038/s41587-021-00867-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative non-negative matrix factorization (iNMF), an algorithm for integrating large, diverse and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively incorporates new datasets as they are generated and allows many users to simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating more than 1 million cells on a standard laptop, integrating large single-cell RNA sequencing and spatial transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex. A new algorithm enables scalable and iterative integration of single-cell datasets.
引用
收藏
页码:1000 / +
页数:19
相关论文
共 50 条
  • [1] Iterative single-cell multi-omic integration using online learning
    Chao Gao
    Jialin Liu
    April R. Kriebel
    Sebastian Preissl
    Chongyuan Luo
    Rosa Castanon
    Justin Sandoval
    Angeline Rivkin
    Joseph R. Nery
    Margarita M. Behrens
    Joseph R. Ecker
    Bing Ren
    Joshua D. Welch
    Nature Biotechnology, 2021, 39 : 1000 - 1007
  • [2] Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity
    Welch, Joshua D.
    Kozareva, Velina
    Ferreira, Ashley
    Vanderburg, Charles
    Martin, Carly
    Macosko, Evan Z.
    CELL, 2019, 177 (07) : 1873 - +
  • [3] PyLiger: scalable single-cell multi-omic data integration in Python']Python
    Lu, Lu
    Welch, Joshua D.
    BIOINFORMATICS, 2022, 38 (10) : 2946 - 2948
  • [4] Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data
    Wang, Haiyue
    Liu, Zaiyi
    Ma, Xiaoke
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 3134 - 3145
  • [5] UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization
    April R. Kriebel
    Joshua D. Welch
    Nature Communications, 13
  • [6] UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization
    Kriebel, April R.
    Welch, Joshua D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] A multi-omic single-cell landscape of human gynecologic malignancies
    Regner, Matthew J.
    Wisniewska, Kamila
    Garcia-Recio, Susana
    Thennavan, Aatish
    Mendez-Giraldez, Raul
    Malladi, Venkat S.
    Hawkins, Gabrielle
    Parker, Joel S.
    Perou, Charles M.
    Bae-Jump, Victoria L.
    Franco, Hector L.
    MOLECULAR CELL, 2021, 81 (23) : 4924 - +
  • [8] A multi-omic single-cell landscape of the aging mouse ovary
    Zhang, Jian
    Jia, Shunze
    Zheng, Zehua
    Cao, Lanrui
    Zhou, Jingyi
    Fu, Xudong
    GEROSCIENCE, 2025,
  • [9] Multi-omic integration by machine learning (MIMaL)
    Dickinson, Quinn
    Aufschnaiter, Andreas
    Ott, Martin
    Meyer, Jesse G.
    BIOINFORMATICS, 2022, 38 (21) : 4908 - 4918
  • [10] An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity
    Glass, David R.
    Tsai, Albert G.
    Oliveria, John Paul
    Hartmann, Felix J.
    Kimmey, Samuel C.
    Calderon, Ariel A.
    Borges, Luciene
    Glass, Marla C.
    Wagar, Lisa E.
    Davis, Mark M.
    Bendall, Sean C.
    IMMUNITY, 2020, 53 (01) : 217 - +