Spatial Functional Outlier Detection in Multivariate Spatial Functional Data

被引:0
|
作者
Ali, Nur Ftihah Mohd [1 ]
Yunus, Rossita Mohamad [1 ]
Mohamed, Ibrahim [1 ]
Othman, Faridah [2 ]
机构
[1] Univ Malaya, Inst Math Sci, Fac Sci, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
来源
SAINS MALAYSIANA | 2024年 / 53卷 / 06期
关键词
Functional Mahalanobis distance; multivariate functional data; spatial outlier; water quality; DEPTH MEASURES;
D O I
10.17576/jsm-2024-5306-18
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multivariate spatial functional data consists of multiple functions of time -dependent attributes observed at each spatial point. This study focuses on detecting spatial outliers in spatial functional data. Firstly, we develop a new method called Mahalanobis Distance Spatial Outlier ( MDSO ) to detect functional outliers in the data. The method introduces the multivariate functional Mahalanobis semi -distance and multivariate pairwise functional Mahalanobis semi -distance metrics based on the multivariate functional principal components analysis to calculate the dissimilarity between functions at each spatial point. Via simulation, we show that MDSO performs better than the other competing methods. Secondly, MDSO has been extended to detect spatial functional outliers as well. The functional outliers can now be categorized as global or/and local functional outliers. The appropriate number of neighbors and the cut-off point for the degree of isolation are determined via simulation. Finally, we demonstrate the application of the MDSO on a water quality data set obtained from Sungai Klang basin in Malaysia. The results can be used to support the authority in making better decisions on the management of the river basin or other spatial data with time -independent attributes.
引用
收藏
页码:1463 / 1476
页数:14
相关论文
共 50 条
  • [31] Spatial regression estimation for functional data with spatial dependency
    Ternynck, Camille
    JOURNAL OF THE SFDS, 2014, 155 (02): : 138 - 160
  • [32] Functional Outlier Detection
    Oguamalam, Jeremy
    Radojicic, Una
    Filzmoser, Peter
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 325 - 333
  • [33] Spatial Weighted Outlier Detection
    Kou, Yufeng
    Lu, Chang-Tien
    Chen, Dechang
    PROCEEDINGS OF THE SIXTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2006, : 614 - +
  • [34] Algorithms for spatial Outlier detection
    Lu, CT
    Chen, DC
    Kou, WF
    THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2003, : 597 - 600
  • [35] Shape outlier detection and visualization for functional data: the outliergram
    Arribas-Gil, Ana
    Romo, Juan
    BIOSTATISTICS, 2014, 15 (04) : 603 - 619
  • [36] Density kernel depth for outlier detection in functional data
    Nicolás Hernández
    Alberto Muñoz
    Gabriel Martos
    International Journal of Data Science and Analytics, 2023, 16 : 481 - 488
  • [37] Density kernel depth for outlier detection in functional data
    Hernandez, Nicolas
    Munoz, Alberto
    Martos, Gabriel
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2023, 16 (04) : 481 - 488
  • [38] OUTLIER DETECTION AND TRIMMED ESTIMATION FOR GENERAL FUNCTIONAL DATA
    Gervini, Daniel
    STATISTICA SINICA, 2012, 22 (04) : 1639 - 1660
  • [39] Mantel test for spatial functional data
    Giraldo, Ramon
    Caballero, William
    Camacho-Tamayo, Jesus
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (01) : 21 - 39
  • [40] Projection-based outlier detection in functional data
    Ren, Haojie
    Chen, Nan
    Zou, Changliang
    BIOMETRIKA, 2017, 104 (02) : 411 - 423