Spatial Functional Outlier Detection in Multivariate Spatial Functional Data

被引:0
|
作者
Ali, Nur Ftihah Mohd [1 ]
Yunus, Rossita Mohamad [1 ]
Mohamed, Ibrahim [1 ]
Othman, Faridah [2 ]
机构
[1] Univ Malaya, Inst Math Sci, Fac Sci, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
来源
SAINS MALAYSIANA | 2024年 / 53卷 / 06期
关键词
Functional Mahalanobis distance; multivariate functional data; spatial outlier; water quality; DEPTH MEASURES;
D O I
10.17576/jsm-2024-5306-18
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multivariate spatial functional data consists of multiple functions of time -dependent attributes observed at each spatial point. This study focuses on detecting spatial outliers in spatial functional data. Firstly, we develop a new method called Mahalanobis Distance Spatial Outlier ( MDSO ) to detect functional outliers in the data. The method introduces the multivariate functional Mahalanobis semi -distance and multivariate pairwise functional Mahalanobis semi -distance metrics based on the multivariate functional principal components analysis to calculate the dissimilarity between functions at each spatial point. Via simulation, we show that MDSO performs better than the other competing methods. Secondly, MDSO has been extended to detect spatial functional outliers as well. The functional outliers can now be categorized as global or/and local functional outliers. The appropriate number of neighbors and the cut-off point for the degree of isolation are determined via simulation. Finally, we demonstrate the application of the MDSO on a water quality data set obtained from Sungai Klang basin in Malaysia. The results can be used to support the authority in making better decisions on the management of the river basin or other spatial data with time -independent attributes.
引用
收藏
页码:1463 / 1476
页数:14
相关论文
共 50 条
  • [21] The R Package HDSpatialScan for the Detection of Clusters of Multivariate and Functional Data using Spatial Scan Statistics
    Frevent, Camille
    Ahmed, Mohamed-Salem
    Soula, Julien
    Smida, Zaineb
    Cucala, Lionel
    Dabo-Niang, Sophie
    Genin, Michael
    R JOURNAL, 2022, 14 (03): : 95 - 120
  • [22] Multivariate functional outlier detection using the fast massive unsupervised outlier detection indices
    Ojo, Oluwasegun Taiwo
    Anta, Antonio Fernandez
    Genton, Marc G.
    Lillo, Rosa E.
    STAT, 2023, 12 (01):
  • [23] Spatial Clustering of Functional Data
    Secchi, Piercesare
    Vantini, Simone
    Vitelli, Valeria
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 283 - 289
  • [24] Cokriging for spatial functional data
    Nerini, David
    Monestiez, Pascal
    Mante, Claude
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (02) : 409 - 418
  • [25] Spatial Functional Data Analysis
    Ramsay, James O.
    Ramsay, Tim
    Sangalli, Laura M.
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 269 - 275
  • [26] Bagplots, boxplots and outlier detection for functional data
    Hyndman, Rob
    Shang, Han Lin
    FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 201 - 207
  • [28] Multivariate Spatial Outlier Detection Using Robust Geographically Weighted Methods
    Harris, Paul
    Brunsdon, Chris
    Charlton, Martin
    Juggins, Steve
    Clarke, Annemarie
    MATHEMATICAL GEOSCIENCES, 2014, 46 (01) : 1 - 31
  • [29] Outlier detection in satellite data using spatial coherence
    Alvera-Azcarate, A.
    Sirjacobs, D.
    Barth, A.
    Beckers, J. -M.
    REMOTE SENSING OF ENVIRONMENT, 2012, 119 : 84 - 91
  • [30] Multivariate Spatial Outlier Detection Using Robust Geographically Weighted Methods
    Paul Harris
    Chris Brunsdon
    Martin Charlton
    Steve Juggins
    Annemarie Clarke
    Mathematical Geosciences, 2014, 46 : 1 - 31