Spatial Functional Outlier Detection in Multivariate Spatial Functional Data

被引:0
|
作者
Ali, Nur Ftihah Mohd [1 ]
Yunus, Rossita Mohamad [1 ]
Mohamed, Ibrahim [1 ]
Othman, Faridah [2 ]
机构
[1] Univ Malaya, Inst Math Sci, Fac Sci, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
来源
SAINS MALAYSIANA | 2024年 / 53卷 / 06期
关键词
Functional Mahalanobis distance; multivariate functional data; spatial outlier; water quality; DEPTH MEASURES;
D O I
10.17576/jsm-2024-5306-18
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multivariate spatial functional data consists of multiple functions of time -dependent attributes observed at each spatial point. This study focuses on detecting spatial outliers in spatial functional data. Firstly, we develop a new method called Mahalanobis Distance Spatial Outlier ( MDSO ) to detect functional outliers in the data. The method introduces the multivariate functional Mahalanobis semi -distance and multivariate pairwise functional Mahalanobis semi -distance metrics based on the multivariate functional principal components analysis to calculate the dissimilarity between functions at each spatial point. Via simulation, we show that MDSO performs better than the other competing methods. Secondly, MDSO has been extended to detect spatial functional outliers as well. The functional outliers can now be categorized as global or/and local functional outliers. The appropriate number of neighbors and the cut-off point for the degree of isolation are determined via simulation. Finally, we demonstrate the application of the MDSO on a water quality data set obtained from Sungai Klang basin in Malaysia. The results can be used to support the authority in making better decisions on the management of the river basin or other spatial data with time -independent attributes.
引用
收藏
页码:1463 / 1476
页数:14
相关论文
共 50 条
  • [1] Multivariate Functional Data Visualization and Outlier Detection
    Dai, Wenlin
    Genton, Marc G.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 923 - 934
  • [2] Robust Outlier Detection Method For Multivariate Spatial Data
    Shukla, Sweta
    Lalitha, S.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2021, 44 (06): : 551 - 554
  • [3] Robust Outlier Detection Method For Multivariate Spatial Data
    Sweta Shukla
    S. Lalitha
    National Academy Science Letters, 2021, 44 : 551 - 554
  • [4] Comparison of local outlier detection techniques in spatial multivariate data
    Ernst, Marie
    Haesbroeck, Gentiane
    DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 31 (02) : 371 - 399
  • [5] Comparison of local outlier detection techniques in spatial multivariate data
    Marie Ernst
    Gentiane Haesbroeck
    Data Mining and Knowledge Discovery, 2017, 31 : 371 - 399
  • [6] Comments on: Multivariate functional outlier detection
    Garcia-Escudero, L. A.
    Gordaliza, A.
    Mayo-Iscar, A.
    STATISTICAL METHODS AND APPLICATIONS, 2015, 24 (02): : 233 - 235
  • [7] Discussion of “Multivariate functional outlier detection”
    Ana Arribas-Gil
    Juan Romo
    Statistical Methods & Applications, 2015, 24 : 263 - 267
  • [8] Comments on: Multivariate functional outlier detection
    L. A. García-Escudero
    A. Gordaliza
    A. Mayo-Iscar
    Statistical Methods & Applications, 2015, 24 : 233 - 235
  • [9] Discussion of "Multivariate functional outlier detection"
    Arribas-Gil, Ana
    Romo, Juan
    STATISTICAL METHODS AND APPLICATIONS, 2015, 24 (02): : 263 - 267
  • [10] Rejoinder to ‘multivariate functional outlier detection’
    Mia Hubert
    Peter Rousseeuw
    Pieter Segaert
    Statistical Methods & Applications, 2015, 24 : 269 - 277