New Stability Results for 2-D Digital Filters With Generalized Overflow Nonlinearities

被引:0
|
作者
Agarwal, Neha [1 ,2 ]
Kar, Haranath [1 ]
机构
[1] Motilal Nehru Natl Inst Technol Allahabad, Dept Elect & Commun Engn, Prayagraj 211004, India
[2] Univ Allahabad, JK Inst Appl Phys & Technol, Dept Elect & Commun, Prayagraj 211002, India
关键词
Stability criteria; Asymptotic stability; Thermal stability; Digital filters; Symmetric matrices; Upper bound; State-space methods; Lyapunov approach; generalized overflow arithmetic; 2-D system; MARCHESINI 2ND MODEL; ASYMPTOTIC STABILITY; SYSTEMS; CRITERION;
D O I
10.1109/TCSII.2023.3335244
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief establishes new global asymptotic stability criteria for fixed-point two-dimensional (2-D) digital filters in Fornasini-Marchesini second local state-space model with generalized overflow nonlinearities. The 2-D Lyapunov method and improved generalized overflow nonlinearity characterization serve as the foundation for the criteria. The approach outperforms a string of previously reported approaches.
引用
收藏
页码:2829 / 2833
页数:5
相关论文
共 50 条
  • [31] 2-D GENERALIZED MFIR FILTERS
    ABOULNASR, T
    FAHMY, MM
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (06): : 732 - 736
  • [32] Overflow Oscillation Elimination of 2-D Digital Filters in the Roesser Model with Wiener Process Noise
    Ahn, Choon Ki
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (10) : 1302 - 1305
  • [33] SPATIAL-DOMAIN DESIGN OF OVERFLOW-STABLE 2-D DIGITAL-FILTERS
    ABOULNASR, T
    FAHMY, MM
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (03): : 301 - 304
  • [34] Hankel norm performance of 2-D digital filters described by Roesser model with overflow arithmetic
    Kumar M.K.
    Dash T.K.
    Australian Journal of Electrical and Electronics Engineering, 2023, 20 (03): : 219 - 225
  • [35] Elimination of overflow oscillations in 2-D digital filters employing saturation arithmetic: An LMI approach
    Singh, V
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (03) : 246 - 249
  • [36] Design of variable 2-D recursive digital filters with guaranteed stability
    Deng, TB
    2000 IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: ELECTRONIC COMMUNICATION SYSTEMS, 2000, : 575 - 578
  • [37] STABILITY OF 2-D DIGITAL FILTERS UNDER PARAMETER VARIATIONS.
    Lu, Wu-Sheng
    Antoniou, Andreas
    Agathoklis, Panajotis
    IEEE transactions on circuits and systems, 1986, CAS-33 (05): : 476 - 482
  • [38] Novel Stability Criterion for 2-D Digital Filters With Saturation Arithmetic
    Agarwal, Neha
    Kar, Haranath
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (04) : 1635 - 1639
  • [39] A technique for the design of 2-D recursive digital filters with guaranteed stability
    Hinamoto, T
    Doi, A
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1996, 7 (02) : 225 - 237
  • [40] AN EXTENSION TO A RESULT CONCERNING THE STABILITY OF 2-D DIGITAL-FILTERS
    ROYTMAN, LM
    MARINOVIC, N
    SWAMY, MNS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (10): : 1251 - 1252