Adaptive self-supervised learning for sequential recommendation

被引:0
|
作者
Sun, Xiujuan [1 ]
Sun, Fuzhen [1 ]
Zhang, Zhiwei [1 ]
Li, Pengcheng [1 ]
Wang, Shaoqing [1 ]
机构
[1] Shandong Univ Technol, Sch Comp Sci & Technol, Zibo, Peoples R China
关键词
Sequential recommendation; Self-supervised learning; Adaptive data augmentation; ATTENTION NETWORK;
D O I
10.1016/j.neunet.2024.106570
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sequential recommendation typically utilizes deep neural networks to mine rich information in interaction sequences. However, existing methods often face the issue of insufficient interaction data. To alleviate the sparsity issue, self-supervised learning is introduced into sequential recommendation. Despite its effectiveness, we argue that current self-supervised learning-based (i.e., SSL-based) sequential recommendation models have the following limitations: (1) using only a single self-supervised learning method, either contrastive self- supervised learning or generative self-supervised learning. (2) employing a simple data augmentation strategy in either the graph structure domain or the node feature domain. We believe that they have not fully utilized the capabilities of both self-supervised methods and have not sufficiently explored the advantages of combining graph augmentation schemes. As a result, they often fail to learn better item representations. In light of this, we propose a novel multi-task sequential recommendation framework named Adaptive Self-supervised Learning for sequential Recommendation ( ASLRec ). Specifically, our framework combines contrastive and generative self-supervised learning methods adaptively, simultaneously applying different perturbations at both the graph topology and node feature levels. This approach constructs diverse augmented graph views and employs multiple loss functions (including contrastive loss, generative loss, mask loss, and prediction loss) for joint training. By encompassing the capabilities of various methods, our model learns item representations across different augmented graph views to achieve better performance and effectively mitigate interaction noise and sparsity. In addition, we add a small proportion of random uniform noise to item representations, making the item representations more uniform and mitigating the inherent popularity bias in interaction records. We conduct extensive experiments on three publicly available benchmark datasets to evaluate our model. The results demonstrate that our approach achieves state-of-the-art performance compared to 14 other competitive methods: the hit rate (HR) improved by over 14.39%, and the normalized discounted cumulative gain (NDCG) increased by over 18.67%.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Self-Supervised Learning Framework for Sequential Recommendation
    Jia, Renqi
    Bai, Xu
    Zhou, Xiaofei
    Pan, Shirui
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [2] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [3] Time Interval Aware Collaborative Sequential Recommendation with Self-supervised Learning
    Ma, Chenrui
    Li, Li
    Chen, Rui
    Li, Xi
    Wang, Yichen
    [J]. WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 87 - 101
  • [4] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [5] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [6] Self-Supervised learning for Conversational Recommendation
    Li, Shuokai
    Xie, Ruobing
    Zhu, Yongchun
    Zhuang, Fuzhen
    Tang, Zhenwei
    Zhao, Wayne Xin
    He, Qing
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (06)
  • [7] Improving Sequential Recommendation Consistency with Self-Supervised Imitation
    Yuan, Xu
    Chen, Hongshen
    Song, Yonghao
    Zhao, Xiaofang
    Ding, Zhuoye
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3321 - 3327
  • [8] SSLRec: A Self-Supervised Learning Framework for Recommendation
    Ren, Xubin
    Xia, Lianghao
    Yang, Yuhao
    Wei, Wei
    Wang, Tianle
    Cai, Xuheng
    Huang, Chao
    [J]. PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 567 - 575
  • [9] Self-supervised representation learning for trip recommendation
    Gao, Qiang
    Wang, Wei
    Zhang, Kunpeng
    Yang, Xin
    Miao, Congcong
    Li, Tianrui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [10] Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation
    Lai, Vivian
    Chen, Huiyuan
    Yeh, Chin-Chia Michael
    Xu, Minghua
    Cai, Yiwei
    Yang, Hao
    [J]. PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 791 - 797