Self-supervised representation learning for trip recommendation

被引:11
|
作者
Gao, Qiang [1 ]
Wang, Wei [1 ]
Zhang, Kunpeng [2 ]
Yang, Xin [1 ]
Miao, Congcong [3 ]
Li, Tianrui [4 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Artificial Intelligence, Chengdu 611130, Peoples R China
[2] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
[3] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[4] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金;
关键词
Trip recommendation; POI graph; Human mobility; Self-supervised learning; Data augmentation;
D O I
10.1016/j.knosys.2022.108791
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trip recommendation is a significant and engaging location-based service that can help new tourists make more customized travel plans. It often attempts to suggest a sequence of points of interest (POIs) for a user who requests a personalized travel demand. Conventional methods either leverage the heuristic algorithms (e.g., dynamic programming) or statistical analysis (e.g., Markov models) to search or rank a POI sequence. These procedures may fail to capture the diversity of human needs and transitional regularities. They even provide recommendations that deviate from tourists' real travel intention when the trip data is sparse. Although recent deep recursive models (e.g., RNN) are capable of alleviating these concerns, existing solutions hardly recognize the practical reality, such as the diversity of tourist demands, uncertainties in the trip generation, and the complex visiting preference. Inspired by the advance in deep learning, we introduce a novel self-supervised representation learning framework for trip recommendation - SelfTrip, aiming at tackling the aforementioned challenges. Specifically, we propose a two-step contrastive learning mechanism concerning the POI representation, as well as trip representation. Furthermore, we present four trip augmentation methods to capture the visiting uncertainties in trip planning. We evaluate our SelfTrip on four real-world datasets, and extensive results demonstrate the promising gain compared with several cutting-edge benchmarks, e.g., up to 4% and 10% improvements on Osaka regarding F-1 and pair-F-1. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [2] Knowledge-Aware Self-supervised Graph Representation Learning for Recommendation
    Sun, Yeheng
    Zhu, Jinghua
    Xi, Heran
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 420 - 432
  • [3] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [4] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [5] Self-Supervised learning for Conversational Recommendation
    Li, Shuokai
    Xie, Ruobing
    Zhu, Yongchun
    Zhuang, Fuzhen
    Tang, Zhenwei
    Zhao, Wayne Xin
    He, Qing
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (06)
  • [6] Recommendation system for technology convergence opportunities based on self-supervised representation learning
    Lee, Jungpyo
    Sohn, So Young
    [J]. SCIENTOMETRICS, 2021, 126 (01) : 1 - 25
  • [7] Recommendation system for technology convergence opportunities based on self-supervised representation learning
    Jungpyo Lee
    So Young Sohn
    [J]. Scientometrics, 2021, 126 : 1 - 25
  • [8] Whitening for Self-Supervised Representation Learning
    Ermolov, Aleksandr
    Siarohin, Aliaksandr
    Sangineto, Enver
    Sebe, Nicu
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [9] Self-Supervised Representation Learning for CAD
    Jones, Benjamin T.
    Hu, Michael
    Kodnongbua, Milin
    Kim, Vladimir G.
    Schulz, Adriana
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21327 - 21336
  • [10] A Self-Supervised Learning Framework for Sequential Recommendation
    Jia, Renqi
    Bai, Xu
    Zhou, Xiaofei
    Pan, Shirui
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,