Improving Sequential Recommendation Consistency with Self-Supervised Imitation

被引:0
|
作者
Yuan, Xu [1 ,2 ,3 ]
Chen, Hongshen [3 ]
Song, Yonghao [1 ]
Zhao, Xiaofang [1 ]
Ding, Zhuoye [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] JD Com, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most sequential recommendation models capture the features of consecutive items in a user-item interaction history. Though e ffective, their representation expressiveness is still hindered by the sparse learning signals. As a result, the sequential recommender is prone to make inconsistent predictions. In this paper, we propose a model, SSI, to improve sequential recommendation consistency with Self-Supervised Imitation. Precisely, we extract the consistency knowledge by utilizing three self-supervised pre-training tasks, where temporal consistency and persona consistency capture user-interaction dynamics in terms of the chronological order and persona sensitivities, respectively. Furthermore, to provide the model with a global perspective, global session consistency is introduced by maximizing the mutual information among global and local interaction sequences. Finally, to comprehensively take advantage of all three independent aspects of consistency-enhanced knowledge, we establish an integrated imitation learning framework. The consistency knowledge is e ffectively internalized and transferred to the student model by imitating the conventional prediction logit as well as the consistency-enhanced item representations. In addition, the flexible self-supervised imitation framework can also benefit other student recommenders. Experiments on four real-world datasets show that SSI effectively outperforms the state-of-the-art sequential recommendation methods.
引用
收藏
页码:3321 / 3327
页数:7
相关论文
共 50 条
  • [1] A Self-Supervised Learning Framework for Sequential Recommendation
    Jia, Renqi
    Bai, Xu
    Zhou, Xiaofei
    Pan, Shirui
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [2] Adaptive self-supervised learning for sequential recommendation
    Sun, Xiujuan
    Sun, Fuzhen
    Zhang, Zhiwei
    Li, Pengcheng
    Wang, Shaoqing
    NEURAL NETWORKS, 2024, 179
  • [3] SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation
    Liu, Yuxi
    Xia, Lianghao
    Huang, Chao
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1609 - 1618
  • [4] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [5] Time Interval Aware Collaborative Sequential Recommendation with Self-supervised Learning
    Ma, Chenrui
    Li, Li
    Chen, Rui
    Li, Xi
    Wang, Yichen
    WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 87 - 101
  • [6] Self-Supervised Adversarial Imitation Learning
    Monteiro, Juarez
    Gavenski, Nathan
    Meneguzzi, Felipe
    Barros, Rodrigo C.
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [7] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [8] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [9] Self-Supervised learning for Conversational Recommendation
    Li, Shuokai
    Xie, Ruobing
    Zhu, Yongchun
    Zhuang, Fuzhen
    Tang, Zhenwei
    Zhao, Wayne Xin
    He, Qing
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (06)
  • [10] Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation
    Lai, Vivian
    Chen, Huiyuan
    Yeh, Chin-Chia Michael
    Xu, Minghua
    Cai, Yiwei
    Yang, Hao
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 791 - 797