Improving Sequential Recommendation Consistency with Self-Supervised Imitation

被引:0
|
作者
Yuan, Xu [1 ,2 ,3 ]
Chen, Hongshen [3 ]
Song, Yonghao [1 ]
Zhao, Xiaofang [1 ]
Ding, Zhuoye [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] JD Com, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most sequential recommendation models capture the features of consecutive items in a user-item interaction history. Though e ffective, their representation expressiveness is still hindered by the sparse learning signals. As a result, the sequential recommender is prone to make inconsistent predictions. In this paper, we propose a model, SSI, to improve sequential recommendation consistency with Self-Supervised Imitation. Precisely, we extract the consistency knowledge by utilizing three self-supervised pre-training tasks, where temporal consistency and persona consistency capture user-interaction dynamics in terms of the chronological order and persona sensitivities, respectively. Furthermore, to provide the model with a global perspective, global session consistency is introduced by maximizing the mutual information among global and local interaction sequences. Finally, to comprehensively take advantage of all three independent aspects of consistency-enhanced knowledge, we establish an integrated imitation learning framework. The consistency knowledge is e ffectively internalized and transferred to the student model by imitating the conventional prediction logit as well as the consistency-enhanced item representations. In addition, the flexible self-supervised imitation framework can also benefit other student recommenders. Experiments on four real-world datasets show that SSI effectively outperforms the state-of-the-art sequential recommendation methods.
引用
收藏
页码:3321 / 3327
页数:7
相关论文
共 50 条
  • [21] Self-supervised Semantic Segmentation: Consistency over Transformation
    Karimijafarbigloo, Sanaz
    Azad, Reza
    Kazerouni, Amirhossein
    Velichko, Yury
    Bagci, Ulas
    Merhof, Dorit
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2646 - 2655
  • [22] Multi-behavior Self-supervised Learning for Recommendation
    Xu, Jingcao
    Wang, Chaokun
    Wu, Cheng
    Song, Yang
    Zheng, Kai
    Wang, Xiaowei
    Wang, Changping
    Zhou, Guorui
    Gai, Kun
    [J]. PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 496 - 505
  • [23] Graph Diffusive Self-Supervised Learning for Social Recommendation
    Li, Jiuqiang
    Wang, Hongjun
    [J]. PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 2442 - 2446
  • [24] Self-Supervised Imitation for Offline Reinforcement Learning With Hindsight Relabeling
    Yu, Xudong
    Bai, Chenjia
    Wang, Changhong
    Yu, Dengxiu
    Chen, C. L. Philip
    Wang, Zhen
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (12): : 7732 - 7743
  • [25] Self-supervised Visual Odometry Based on Geometric Consistency
    Song, Rujun
    Liu, Jiaqi
    Liao, Kaisheng
    Xiao, Zhuoling
    Yan, Bo
    [J]. 2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [26] Popularity-Debiased Graph Self-Supervised for Recommendation
    Li, Shanshan
    Hu, Xinzhuan
    Guo, Jingfeng
    Liu, Bin
    Qi, Mingyue
    Jia, Yutong
    [J]. ELECTRONICS, 2024, 13 (04)
  • [27] Self-supervised graph learning for occasional group recommendation
    Hao, Bowen
    Yin, Hongzhi
    Li, Cuiping
    Chen, Hong
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10880 - 10902
  • [28] Self-supervised Hypergraph Transformer with Alignment and Uniformity for Recommendation
    Yang, XianFeng
    Liu, Yang
    [J]. IAENG International Journal of Computer Science, 2024, 51 (03) : 292 - 300
  • [29] Self-supervised Augmentation Consistency for Adapting Semantic Segmentation
    Araslanov, Nikita
    Roth, Stefan
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15379 - 15389
  • [30] Social Recommendation with Self-Supervised Metagraph Informax Network
    Long, Xiaoling
    Huang, Chao
    Xu, Yong
    Xu, Huance
    Dai, Peng
    Xia, Lianghao
    Bo, Liefeng
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1160 - 1169