Vibration data-driven anomaly detection in UAVs: A deep learning approach

被引:5
|
作者
Ozkat, Erkan Caner [1 ]
机构
[1] Recep Tayyip Erdogan Univ, Fac Engn & Architecture, Dept Mech Engn, TR-53100 Rize, Turkiye
来源
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH | 2024年 / 54卷
关键词
Unmanned Aerial Vehicles; Fault detection; Vibrations; Predictive maintenance; Deep learning;
D O I
10.1016/j.jestch.2024.101702
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Unmanned Aerial Vehicles (UAVs) are employed for diverse applications, including aerial surveillance and package delivery. However, the occurrence of faults, especially propeller failures, poses significant risks to safe and efficient operations. Detecting such faults at an early stage is critical to avoiding catastrophic outcomes and ensuring the reliability and lifespan of UAVs. To address this crucial need, this study proposes a novel approach for monitoring vibration signals using a wavelet scattering long short-term memory (LSTM) autoencoder network. The LSTM autoencoder can learn temporal patterns from input signals, whereas wavelet scattering can capture the dynamics and interactions of various frequency components of signals. First, a deliberate modification was made to one of the propeller blades of the DJI M600 multi -rotor UAV to deliberately induce vibration. The proposed network was then evaluated on the acquired vibration signal using the MTi-G-700 IMU. The results showed that warning signals were generated from all axes before failures occurred. Notably, the earliest warnings were obtained from y-axis data within 100 s, while the first warning from z-axis data was recognized 130 s later. The failure occurred at roughly 280 s. The experimental findings indicate that the proposed method can accurately detect anomalies that could potentially lead to failure.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Anomaly detection in streaming environmental sensor data: A data-driven modeling approach
    Hill, David J.
    Minsker, Barbara S.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (09) : 1014 - 1022
  • [12] Deep Learning for Anomaly Detection in CNC Machine Vibration Data: A RoughLSTM-Based Approach
    Cekik, Rasim
    Turan, Abdullah
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [13] Early anomaly detection and localisation in distribution network: a data-driven approach
    Shi, Xin
    Qiu, Robert
    He, Xing
    Ling, Zenan
    Yang, Haosen
    Chu, Lei
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (18) : 3814 - 3825
  • [14] A data-driven approach for multivariate contextualized anomaly detection: industry use
    Stojanovic, Nenad
    Dinic, Marko
    Stojanovic, Ljiljana
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1560 - 1569
  • [15] Data-Driven Anomaly Detection in Autonomous Platoon
    Ucar, Seyhan
    Ergen, Sinem Coleri
    Ozkasap, Oznur
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [16] Data-Driven Network Intelligence for Anomaly Detection
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    IEEE NETWORK, 2019, 33 (03): : 88 - 95
  • [17] Study on Optimization of Data-Driven Anomaly Detection
    Zhou, Yiqing
    Liao, Rui
    Chen, Yongjia
    2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 123 - 127
  • [18] A Data-Driven Approach for Grid Synchronization Based on Deep Learning
    Miranbeigi, Mohammadreza
    Kandula, Prasad
    Divan, Deepak
    2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2021, : 2985 - 2991
  • [19] Counting Apples and Oranges With Deep Learning: A Data-Driven Approach
    Chen, Steven W.
    Shivakumar, Shreyas S.
    Dcunha, Sandeep
    Das, Jnaneshwar
    Okon, Edidiong
    Qu, Chao
    Taylor, Camillo J.
    Kumar, Vijay
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02): : 781 - 788
  • [20] A data-driven deep learning approach for options market making
    Lai, Qianhui
    Gao, Xuefeng
    Li, Lingfei
    QUANTITATIVE FINANCE, 2021,