MACHINE-LEARNING APPROACH TO MODELING OXIDATION OF TOLUENE IN A BUBBLE COLUMN REACTOR

被引:0
|
作者
Tayeb, Raihan [1 ]
Zhang, Yuwen [1 ]
机构
[1] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Machine learning; Subgrid-scale modeling; Reactive-diffusive-convective system; Toluene oxidation; Data-driven approach; LIQUID-PHASE OXIDATION; MASS-TRANSFER; SELECTIVITY; SIMULATIONS; INTERFACES; TRANSPORT; DYNAMICS; IMPACT;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A feed forward machine-learning (ML) model is applied to study bubble induced turbulence and bubble mass transfer in a bubble column reactor. Using direct numerical simulation data for forced turbulence, bubble deformations and flow velocities are predicted. To predict mass transfer, ML sub-grid scale (SGS) modeling technique is introduced for the concentration of reactants and products undergoing parallel competitive reactions in the oxidation of toluene. The ML model replaces the iterative approach associated with the use of analytical profiles for previous SGS models for correcting concentration profiles in boundary layers. The present model, thus, offers a significant performance bonus as well as the flexibility to extend to more complex scenarios due to its data-driven nature.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Forecasting client retention - A machine-learning approach
    Elisa Schaeffer, Satu
    Rodriguez Sanchez, Sara Veronica
    JOURNAL OF RETAILING AND CONSUMER SERVICES, 2020, 52
  • [42] A machine-learning approach to ranking RDF properties
    Dessi, Andrea
    Atzori, Maurizio
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2016, 54 : 366 - 377
  • [43] A machine-learning approach to a mobility policy proposal
    Shulajkovska, Miljana
    Smerkol, Maj
    Dovgan, Erik
    Gams, Matjaz
    HELIYON, 2023, 9 (10)
  • [44] A machine-learning approach to optimal bid pricing
    Lawrence, RD
    COMPUTATIONAL MODELING AND PROBLEM SOLVING IN THE NETWORKED WORLD: INTERFACES IN COMPUTER SCIENCE AND OPERATIONS RESEARCH, 2002, 21 : 97 - 118
  • [45] Examining the radius valley: a machine-learning approach
    MacDonald, Mariah G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (04) : 5062 - 5069
  • [46] A Machine-Learning Approach to Autonomous Music Composition
    Lichtenwalter, Ryan
    Lichtenwalter, Katerina
    Chawla, Nitesh
    JOURNAL OF INTELLIGENT SYSTEMS, 2010, 19 (02) : 95 - 123
  • [47] Machine-learning Approach to Microbial Colony Localisation
    Michal, Cicatka
    Radim, Burget
    Jan, Karasek
    2022 45TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING, TSP, 2022, : 206 - 211
  • [48] Machine-learning approach to holographic particle characterization
    1600, OSA - The Optical Society (22):
  • [49] A machine-learning approach to predict postprandial hypoglycemia
    Wonju Seo
    You-Bin Lee
    Seunghyun Lee
    Sang-Man Jin
    Sung-Min Park
    BMC Medical Informatics and Decision Making, 19
  • [50] Machine-learning approach identifies wolfcamp reservoirs
    Carpenter C.
    JPT, Journal of Petroleum Technology, 2019, 71 (03): : 87 - 89