Composite Ionogel Electrodes for Polymeric Solid-State Li-Ion Batteries

被引:0
|
作者
Schorr, Noah B. [1 ]
Bhandarkar, Austin [2 ]
Mcbrayer, Josefine D. [1 ]
Talin, A. Alec [2 ]
机构
[1] Sandia Natl Labs, Dept Power Sources R&D, Albuquerque, NM 87123 USA
[2] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA
关键词
solid-state electrolyte; ionogel; polymer electrolyte; Li-ion battery; ELECTROLYTES; TORTUOSITY;
D O I
10.3390/polym16131763
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Realizing rechargeable cells with practical energy and power density requires electrodes with high active material loading, a remaining challenge for solid-state batteries. Here, we present a new strategy based on ionogel-derived solid-state electrolytes (SSEs) to form composite electrodes that enable high active material loading (>10 mg/cm(2), similar to 9 mA/cm(2) at 1C) in a scalable approach for fabricating Li-ion cells. By tuning the precursor and active materials composition incorporated into the composite lithium titanate electrodes, we achieve near-theoretical capacity utilization at C/5 rates and cells capable of stable cycling at 5.85 mA/cm(2) (11.70 A/g) with over 99% average Coulombic efficiency at room temperature. Finally, we demonstrate a complete polymeric solid-state cell with a composite anode and a composite lithium iron phosphate cathode with ionogel SSEs, which is capable of stable cycling at a 1C rate.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [31] Solid electrolytes for solid-state Li/Na-metal batteries: inorganic, composite and polymeric materials
    Song, Shufeng
    Hu, Ning
    Lu, Li
    CHEMICAL COMMUNICATIONS, 2022, 58 (86) : 12035 - 12045
  • [32] Antiperovskite Li3OCl Superionic Conductor Films for Solid-State Li-Ion Batteries
    Lu, Xujie
    Howard, John W.
    Chen, Aiping
    Zhu, Jinlong
    Li, Shuai
    Wu, Gang
    Dowden, Paul
    Xu, Hongwu
    Zhao, Yusheng
    Jia, Quanxi
    ADVANCED SCIENCE, 2016, 3 (03):
  • [33] Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries
    Meesala, Yedukondalu
    Jena, Anirudha
    Chang, Ho
    Liu, Ru-Shi
    ACS ENERGY LETTERS, 2017, 2 (12): : 2734 - 2751
  • [34] Rationally coordinating polymer enabling effective Li-ion percolation network in composite electrolyte for solid-state Li-metal batteries
    Zhao, Long
    Du, Yunfei
    Wang, Chenming
    Li, Dong
    Li, Hao
    Zhao, Yong
    ENERGY STORAGE MATERIALS, 2024, 68
  • [35] Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries
    Xu, Rong
    de Vasconcelos, Luize Scalco
    Zhao, Kejie
    JOURNAL OF MATERIALS RESEARCH, 2016, 31 (18) : 2715 - 2727
  • [36] Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries
    Rong Xu
    Luize Scalco de Vasconcelos
    Kejie Zhao
    Journal of Materials Research, 2016, 31 : 2715 - 2727
  • [37] Screen-Printed Composite LiFePO4-LLZO Cathodes Towards Solid-State Li-ion Batteries
    Molaiyan, Palanivel
    Valikangas, Juho
    Sliz, Rafal
    Ramteke, D. D.
    Hu, Tao
    Paolella, Andrea
    Fabritius, Tapio
    Lassi, Ulla
    CHEMELECTROCHEM, 2024, 11 (09)
  • [38] APCVD Graphene-Based Composite Electrodes for Li-Ion Batteries
    Floraki, Christina
    Sapountzis, Antonis
    Vernardou, Dimitra
    ENERGIES, 2022, 15 (03)
  • [39] Doped-Si-Ag composite electrodes for Li-ion batteries
    Talla, Girikrishna
    Guduru, Ramesh K.
    Li, Ben Q.
    Mohanty, Pravansu S.
    SOLID STATE IONICS, 2015, 269 : 8 - 13
  • [40] Nanostructured composite electrodes for Li-ion batteries with enhanced energy density
    Nitta, Naoki
    Wu, Feixiang
    Evanoff, Kara
    Lee, Jung Tae
    Gordon, Daniel
    Gu, Wentian
    Benson, Jim
    Magasinski, Alexandre
    Kovalenko, Igor
    Kim, Hyea
    Yushin, Gleb
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248