Composite Ionogel Electrodes for Polymeric Solid-State Li-Ion Batteries

被引:0
|
作者
Schorr, Noah B. [1 ]
Bhandarkar, Austin [2 ]
Mcbrayer, Josefine D. [1 ]
Talin, A. Alec [2 ]
机构
[1] Sandia Natl Labs, Dept Power Sources R&D, Albuquerque, NM 87123 USA
[2] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA
关键词
solid-state electrolyte; ionogel; polymer electrolyte; Li-ion battery; ELECTROLYTES; TORTUOSITY;
D O I
10.3390/polym16131763
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Realizing rechargeable cells with practical energy and power density requires electrodes with high active material loading, a remaining challenge for solid-state batteries. Here, we present a new strategy based on ionogel-derived solid-state electrolytes (SSEs) to form composite electrodes that enable high active material loading (>10 mg/cm(2), similar to 9 mA/cm(2) at 1C) in a scalable approach for fabricating Li-ion cells. By tuning the precursor and active materials composition incorporated into the composite lithium titanate electrodes, we achieve near-theoretical capacity utilization at C/5 rates and cells capable of stable cycling at 5.85 mA/cm(2) (11.70 A/g) with over 99% average Coulombic efficiency at room temperature. Finally, we demonstrate a complete polymeric solid-state cell with a composite anode and a composite lithium iron phosphate cathode with ionogel SSEs, which is capable of stable cycling at a 1C rate.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [21] Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion batteries
    Guan, Dichang
    Huang, Yong
    He, Meimei
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    Du, Ke
    IONICS, 2021, 27 (10) : 4127 - 4134
  • [22] Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion batteries
    Dichang Guan
    Yong Huang
    Meimei He
    Guorong Hu
    Zhongdong Peng
    Yanbing Cao
    Ke Du
    Ionics, 2021, 27 : 4127 - 4134
  • [23] Enhancing Li+ transport efficiency in solid-state Li-ion batteries with a ceramic-array-based composite electrolyte
    Yeh, Shu-Ming
    Li, Chia-Chen
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (44) : 24390 - 24402
  • [24] Negative electrodes for Li-ion batteries
    Kinoshita, K
    Zaghib, K
    JOURNAL OF POWER SOURCES, 2002, 110 (02) : 416 - 423
  • [25] Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries
    Raj, R.
    Wolfenstine, J.
    JOURNAL OF POWER SOURCES, 2017, 343 : 119 - 126
  • [26] Discovery of Superionic Solid-State Electrolyte for Li-Ion Batteries via Machine Learning
    Kang, Seungpyo
    Kim, Minseon
    Min, Kyoungmin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (39): : 19335 - 19343
  • [27] Ameliorating the electrode/electrolyte interface compatibility in Li-ion solid-state batteries with plasticizer
    Seol, Jae-chang
    Balasubramaniam, Ramkumar
    Aravindan, Vanchiappan
    Thangavel, Ranjith
    Lee, Yun-Sung
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 927
  • [28] Silicon disulfide for high-performance Li-ion batteries and solid-state electrolytes
    Nam, Ki-Hun
    Kim, Do-Hyeon
    Lee, Young-Han
    Han, Su Choel
    Choi, Jeong-Hee
    Ha, Yoon-Cheol
    Park, Cheol-Min
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (10) : 4987 - 5000
  • [29] Designing inorganic electrolytes for solid-state Li-ion batteries: A perspectine of LGPS and garnet
    Liang, Feng
    Sun, Yulong
    Yuan, Yifei
    Huang, Jian
    Hou, Minjie
    Lu, Jun
    MATERIALS TODAY, 2021, 50 : 418 - 441
  • [30] Polymeric ionic liquid nanoparticles as binder for composite Li-ion electrodes
    von Zamory, Jan
    Bedu, Melanie
    Fantini, Sebastien
    Passerini, Stefano
    Paillard, Elie
    JOURNAL OF POWER SOURCES, 2013, 240 : 745 - 752