Composite Ionogel Electrodes for Polymeric Solid-State Li-Ion Batteries

被引:0
|
作者
Schorr, Noah B. [1 ]
Bhandarkar, Austin [2 ]
Mcbrayer, Josefine D. [1 ]
Talin, A. Alec [2 ]
机构
[1] Sandia Natl Labs, Dept Power Sources R&D, Albuquerque, NM 87123 USA
[2] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA
关键词
solid-state electrolyte; ionogel; polymer electrolyte; Li-ion battery; ELECTROLYTES; TORTUOSITY;
D O I
10.3390/polym16131763
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Realizing rechargeable cells with practical energy and power density requires electrodes with high active material loading, a remaining challenge for solid-state batteries. Here, we present a new strategy based on ionogel-derived solid-state electrolytes (SSEs) to form composite electrodes that enable high active material loading (>10 mg/cm(2), similar to 9 mA/cm(2) at 1C) in a scalable approach for fabricating Li-ion cells. By tuning the precursor and active materials composition incorporated into the composite lithium titanate electrodes, we achieve near-theoretical capacity utilization at C/5 rates and cells capable of stable cycling at 5.85 mA/cm(2) (11.70 A/g) with over 99% average Coulombic efficiency at room temperature. Finally, we demonstrate a complete polymeric solid-state cell with a composite anode and a composite lithium iron phosphate cathode with ionogel SSEs, which is capable of stable cycling at a 1C rate.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] On the design of solid-state Li-ion batteries
    Sokseiha Muy
    Nicola Marzari
    Nature Computational Science, 2021, 1 : 179 - 180
  • [2] On the design of solid-state Li-ion batteries
    Muy, Sokseiha
    Marzari, Nicola
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (03): : 179 - 180
  • [3] Solid-state thin film li-ion batteries
    Song Jie
    Wu Qihui
    Dong Quanfeng
    Zheng Mingsen
    Wu Suntao
    Sun Shigang
    PROGRESS IN CHEMISTRY, 2007, 19 (01) : 66 - 73
  • [4] Aerosol Jet Printed Polymer Composite Electrolytes for Solid-State Li-Ion Batteries
    Deiner, L. Jay
    Jenkins, Thomas
    Howell, Thomas
    Rottmayer, Michael
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (12)
  • [5] In Situ Strain Measurement in Solid-State Li-Ion Batteries
    Koohbor, B.
    Sang, L.
    Capraz, O. O.
    Gewirth, A. A.
    Nuzzo, R. G.
    White, S. R.
    Sottos, N. R.
    FRACTURE, FATIGUE, FAILURE AND DAMAGE EVOLUTION, VOL 6, 2019, : 1 - 3
  • [6] Electrochemistry of anodes in solid-state Li-ion polymer batteries
    Zaghib, K
    Armand, M
    Gauthier, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) : 3135 - 3140
  • [7] Fluorosulfate Positive Electrodes for Li-Ion Batteries Made via a Solid-State Dry Process
    Ati, M.
    Sougrati, Moulay T.
    Recham, N.
    Barpanda, P.
    Leriche, J-B.
    Courty, M.
    Armand, M.
    Jumas, J-C.
    Tarascon, J-M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (09) : A1007 - A1015
  • [8] Modeling of Chemo-Mechanical Multi-Particle Interactions in Composite Electrodes for Liquid and Solid-State Li-Ion Batteries
    Bistri, Donald
    Di Leo, Claudio V.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)
  • [9] Grain boundaries impede ion conduction in solid-state Li-ion batteries
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2018, 96 (04) : 8 - 9
  • [10] In Situ Strain Measurement in Solid-State Li-Ion Battery Electrodes
    Koohbor, Behrad
    Sang, Lingzi
    capraz, Omer o.
    Gewirth, Andrew A.
    Sottos, Nancy R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)