Mapping heterogeneous land use/land cover and crop types in Senegal using sentinel-2 data and machine learning algorithms

被引:1
|
作者
Gumma, Murali Krishna [1 ]
Panjala, Pranay [2 ]
Teluguntla, Pardhasaradhi [3 ]
机构
[1] Int Crops Res Inst Semi Arid Trop, Geospatial Sci & Big Data, BP 12404, Niamey, Niger
[2] Int Crops Res Inst Semi Arid Trop, Geospatial Sci & Big Data, Patancheru, India
[3] Bay Area Environm Res Inst, NASA Ames Res Pk, Moffett Field, CA USA
关键词
Cropping pattern; sentinel-2; machine learning algorithms; spectral matching techniques; semi-arid; Crop type mapping; TIME-SERIES; RANDOM FOREST; FOOD SECURITY; EXTENT; MODIS; AREA; CLASSIFICATION; PHENOLOGY; IMAGERY; CROPLANDS;
D O I
10.1080/17538947.2024.2378815
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In rainfed and dryland agricultural areas with smallholder farms (less than 2 ha), crop diversity is high due to farmers' decisions and local climatic conditions, leading to a complex spatial-temporal distribution of crops. Monitoring and mapping crops is crucial for food security and implementing agricultural support programs. This study aims to map crop types across Senegal using Sentinel-2 satellite imagery and the limited ground reference data available, which has been increasing recently. The study compares conventional supervised classification algorithms to unsupervised classification algorithms using high-resolution satellite imagery. Crop type classification for 2020 in Senegal employed supervised machine learning algorithms, including Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on the Google Earth Engine (GEE) cloud platform, and the unsupervised Iso-clustering classification algorithm with Spectral Matching Techniques (SMTs). Due to limited ground data, supervised classifiers achieved 45-55% accuracy, whereas the unsupervised semi-automatic approach achieved over 75% accuracy. The study indicates that supervised classifiers' performance depends on ground data quantity, while SMT shows good performance even with limited ground data. This SMT approach is valuable for classifying crop types in dryland areas with smallholder farms and diverse cropping patterns.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
    Kpienbaareh, Daniel
    Sun, Xiaoxuan
    Wang, Jinfei
    Luginaah, Isaac
    Bezner Kerr, Rachel
    Lupafya, Esther
    Dakishoni, Laifolo
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [22] Can a Hierarchical Classification of Sentinel-2 Data Improve Land Cover Mapping?
    Wasniewski, Adam
    Hoscilo, Agata
    Chmielewska, Milena
    REMOTE SENSING, 2022, 14 (04)
  • [23] Mapping Seasonal Agricultural Land Use Types Using Deep Learning on Sentinel-2 Image Time Series
    Debella-Gilo, Misganu
    Gjertsen, Arnt Kristian
    REMOTE SENSING, 2021, 13 (02) : 1 - 17
  • [24] LAND-COVER AND LAND-USE CLASSIFICATION BASED ON MULTITEMPORAL SENTINEL-2 DATA
    Weinmann, Martin
    Weidner, Uwe
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4946 - 4949
  • [25] Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms
    Prins, Adriaan Jacobus
    Van Niekerk, Adriaan
    GEO-SPATIAL INFORMATION SCIENCE, 2021, 24 (02) : 215 - 227
  • [26] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    REMOTE SENSING, 2022, 14 (01)
  • [27] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [28] Improving Land-Cover and Crop-Types Classification of Sentinel-2 Satellite Images
    Laban, Noureldin
    Abdellatif, Bassam
    Ebeid, Hala M.
    Shedeed, Howida A.
    Tolba, Mohamed F.
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 449 - 458
  • [29] BENCHMARKING OF ALGORITHMS FOR CROP TYPE LAND-COVER MAPS USING SENTINEL-2 IMAGE TIME SERIES
    Inglada, J.
    Arias, M.
    Tardy, B.
    Morin, D.
    Valero, S.
    Hagolle, O.
    Dedieu, G.
    Sepulcre, G.
    Bontemps, S.
    Defourny, P.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3993 - 3996
  • [30] ASSESSMENT OF CLASSIFICATION ACCURACIES OF SENTINEL-2 AND LANDSAT-8 DATA FOR LAND COVER/USE MAPPING
    Topaloglu, Raziye Hale
    Sertel, Elif
    Musaoglu, Nebiye
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 1055 - 1059