Improving Land-Cover and Crop-Types Classification of Sentinel-2 Satellite Images

被引:3
|
作者
Laban, Noureldin [1 ]
Abdellatif, Bassam [1 ]
Ebeid, Hala M. [2 ]
Shedeed, Howida A. [2 ]
Tolba, Mohamed F. [2 ]
机构
[1] Natl Author Remote Sensing & Space Sci, Data Recept & Anal Div, Cairo, Egypt
[2] Ain Shams Univ, Fac Comp & Informat Sci, Cairo, Egypt
关键词
Artificial intelligence; Crop-types classification; Egypt; Remote Sensing (RS); Satellite images; Sentinel-2; SUPPORT VECTOR MACHINE; FEATURE-SELECTION; TIME-SERIES; DIFFERENTIATION; ALGORITHMS; MODEL; SVM;
D O I
10.1007/978-3-319-74690-6_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Land cover and crop-types classification are of great importance for monitoring agricultural production and land-use patterns. Many classification approaches have used different parameters settings. In this paper, we investigate the modern classifiers using the most effective parameters to improve the classification accuracy of the major crops and land covers that exist in Sentinel-2 images for Fayoum region of Egypt. Four major crop-types and four major land-cover types are classified. This paper investigates the k-Nearest Neighbor (k-NN), Artificial Neural Network (ANN), Support Vector Machine (SVM), and Random Forest (RF) supervised classifiers. The experimental results show that the SVM and the RF report more robust results. The k-NN reports the least accuracy especially for crop types. The RT, K-NN, ANN, and SVM record 92.7%, 92%, 92.1% and 94.4% respectively. The SVM classifier out-performs the k-NN, ANN and RF classifiers.
引用
收藏
页码:449 / 458
页数:10
相关论文
共 50 条
  • [1] Deep convolutional neural networks for land-cover classification with Sentinel-2 images
    Kroupi, Eleni
    Kesa, Maria
    Diego Navarro-Sanchez, Victor
    Saeed, Salman
    Pelloquin, Camille
    Alhaddad, Bahaa
    Moreno, Laura
    Soria-Frisch, Aureli
    Ruffini, Giulio
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02)
  • [2] The effect of fusing Sentinel-2 bands on land-cover classification
    Gasparovic, Mateo
    Jogun, Tomislav
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (03) : 822 - 841
  • [3] LAND-COVER AND LAND-USE CLASSIFICATION BASED ON MULTITEMPORAL SENTINEL-2 DATA
    Weinmann, Martin
    Weidner, Uwe
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4946 - 4949
  • [4] A Framework for Fine-Grained Land-Cover Classification Using 10 m Sentinel-2 Images
    Zhang, Wenge
    Yang, Xuan
    Yuan, Zhanliang
    Chen, Zhengchao
    Xu, Yue
    [J]. REMOTE SENSING, 2024, 16 (02)
  • [5] Land Cover and Crop Classification using Multitemporal Sentinel-2 Images Based on Crops Phenological Cycle
    Khaliq, Aleem
    Peroni, Leonardo
    Chiaberge, Marcello
    [J]. 2018 IEEE WORKSHOP ON ENVIRONMENTAL, ENERGY, AND STRUCTURAL MONITORING SYSTEMS (EESMS), 2018, : 19 - 23
  • [6] INVESTIGATIONS ON THE POTENTIAL OF HYPERSPECTRAL AND SENTINEL-2 DATA FOR LAND-COVER / LAND-USE CLASSIFICATION
    Weinmann, M.
    Maier, P. M.
    Florath, J.
    Weidner, U.
    [J]. ISPRS TC I MID-TERM SYMPOSIUM INNOVATIVE SENSING - FROM SENSORS TO METHODS AND APPLICATIONS, 2018, 4-1 : 155 - 162
  • [7] Comparison of land use / land cover classification performances of new generation multispectral and hyperspectral satellite images: Sentinel-2 and PRISMA Satellite
    Tirmanoglu, Buse
    Ismailoglu, Irem
    Kokal, Aylin Tuzcu
    Musaoglu, Nebiye
    [J]. GEOMATIK, 2023, 8 (01): : 79 - 90
  • [8] Improving land cover classification accuracy of Sentinel-2 images: a systematic review of articles between 2015 and 2021
    Mohammed A. Saeed
    Ali M. Al-Ghamdi
    [J]. Arabian Journal of Geosciences, 2024, 17 (4)
  • [9] BENCHMARKING OF ALGORITHMS FOR CROP TYPE LAND-COVER MAPS USING SENTINEL-2 IMAGE TIME SERIES
    Inglada, J.
    Arias, M.
    Tardy, B.
    Morin, D.
    Valero, S.
    Hagolle, O.
    Dedieu, G.
    Sepulcre, G.
    Bontemps, S.
    Defourny, P.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3993 - 3996
  • [10] Land cover classification of Andean sub-basins in Colombia based on Sentinel-2 satellite images and deep learning
    Arrechea-Castillo, Darwin A.
    Solano-Correa, Yady T.
    Munoz-Ordonez, Julian F.
    Camacho-De Angulo, Yineth V.
    Sanchez-Barrera, Estiven
    Figueroa-Casas, Apolinar
    Pencue-Fierro, Edgar L.
    [J]. GEOSPATIAL INFORMATICS XIII, 2023, 12525