Covalent organic framework membranes achieving Mg/Li separation by permeating Mg2+ while retaining Li+

被引:0
|
作者
Liu, Ming [1 ]
Wei, Mingjie [1 ]
Liu, Gan [1 ]
Li, Daiwen [1 ]
Zhang, Zhe [2 ]
Wang, Yong [1 ,3 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Sch Environm Sci & Engn, Nanjing 211816, Jiangsu, Peoples R China
[3] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic framework (COF); Desalination; Ion rejection; Hydrophilicity; Non-equilibrium molecular dynamics; simulation; LITHIUM; DESALINATION; PARAMETERS; ALGORITHMS; SALT;
D O I
10.1016/j.memsci.2024.123247
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Due to the growing demand for lithium in the new energy industry, significant attention has been focused on developing lithium extraction technologies from salt-lake brine. However, the high Mg/Li ratio in salt-lake brine presents challenges for membrane separation technology. If a membrane can allow Mg2+ and water molecules to pass through while retaining Li+, the retained brine will have concentrated Li+ with a reduced Mg/Li ratio, creating the facilitation of further lithium extraction. In this study, we discovered through non-equilibrium molecular dynamics simulations that strongly hydrophilic covalent organic frameworks membranes capture Li+ in their pores, preventing additional Li+ from entering the nanopores. Meanwhile, Mg2+ can freely penetrate these nanopores along with water molecules. This adsorption of Li+ and the free permeation of Mg2+ with water molecules result in the effective separation of Li+ and Mg2+. Consequently, the retained brine becomes lithium-rich with reduced Mg/Li ratio. The findings of this work provide valuable guidance for designing nanofiltration membranes for extracting lithium from salt lakes with high Mg/Li ratio.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Enhancing Mg2+/Li+ separation performance of nanofiltration membranes through polyelectrolyte modulation and surface modification
    Wang, Jingjun
    Zhang, Hao
    Tian, Rukang
    Shen, Huiyan
    Li, Wei -Hua
    Wang, Yunkun
    JOURNAL OF MEMBRANE SCIENCE, 2024, 701
  • [22] Enhancing Mg2+/Li+ separation performance of nanofiltration membranes through polyelectrolyte modulation and surface modification
    Wang, Jingjun
    Zhang, Hao
    Tian, Rukang
    Shen, Huiyan
    Li, Wei-Hua
    Wang, Yunkun
    Journal of Membrane Science, 2024, 701
  • [23] Crown ether-functionalized nanofiltration membranes with high ions selectivity for Li+/Mg2+ separation
    Jiang, Chi
    Bai, Shibo
    Li, Jiawang
    Wang, Ming
    Zhou, Yan
    Hou, Yingfei
    Journal of Membrane Science, 2025, 714
  • [24] Effects of Li+ transport and Li+ immobilization on Li+/Mg2+ competition in cells:: implications for bipolar disorder
    Layden, BT
    Abukhdeir, AM
    Williams, N
    Fonseca, CP
    Carroll, L
    Castro, MMCA
    Geraldes, CFGC
    Bryant, FB
    de Freitas, DM
    BIOCHEMICAL PHARMACOLOGY, 2003, 66 (10) : 1915 - 1924
  • [25] High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt
    Xu, Yang
    Peng, Huawen
    Luo, Hao
    Zhang, Qi
    Liu, Zhitian
    Zhao, Qiang
    DESALINATION, 2022, 526
  • [26] Tuning composite nanofiltration membranes with γ-cyclodextrin for improved Mg2+/Li+ selectivity
    Li, Nan
    Zhang, Tiancan
    Xue, Weihao
    Zhao, Ying
    Zhu, Bo
    Pei, Xiaoyuan
    Xu, Zhiwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330
  • [27] Positive charged PEI-TMC composite nanofiltration membrane for separation of Li + and Mg2+ from brine with high Mg2+/Li+ ratio
    Xu, Ping
    Wang, Wei
    Qian, Xiaoming
    Wang, Haibo
    Guo, Changsheng
    Li, Nan
    Xu, Zhiwei
    Teng, Kunyue
    Wang, Zhen
    DESALINATION, 2019, 449 : 57 - 68
  • [28] A positively charged PI nanofiltration membrane with good separation for Li+ and Mg2+
    Bi, Qiuyan
    Xu, Shiai
    DESALINATION AND WATER TREATMENT, 2020, 198 : 98 - 107
  • [30] DiaNanofiltration-based process for effective separation of Li+ from the high Mg2+/Li+ ratio aqueous solution
    Ashraf, Muhammad Awais
    Li, Xingchun
    Wang, Junfeng
    Guo, Shiwei
    Xu, Bao-Hua
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 247