A multivariate spatial and spatiotemporal ARCH Model

被引:2
|
作者
Otto, Philipp [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow, Scotland
关键词
Conditional heteroscedasticity; Multivariate spatiotemporal data; QML estimator; Real-estate prices; Volatility clustering; MAXIMUM LIKELIHOOD ESTIMATORS; IDENTIFICATION; UNIVARIATE;
D O I
10.1016/j.spasta.2024.100823
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper introduces a multivariate spatiotemporal autoregressive conditional heteroscedasticity (ARCH) model based on a vec-representation. The model includes instantaneous spatial autoregressive spill -over effects, as they are usually present in geo-referenced data. Furthermore, spatial and temporal cross -variable effects in the conditional variance are explicitly modelled. We transform the model to a multivariate spatiotemporal autoregressive model using a logsquared transformation and derive a consistent quasi -maximum -likelihood estimator (QMLE). For finite samples and different error distributions, the performance of the QMLE is analysed in a series of Monte -Carlo simulations. In addition, we illustrate the practical usage of the new model with a real -world example. We analyse the monthly real-estate price returns for three different property types in Berlin from 2002 to 2014. We find weak (instantaneous) spatial interactions, while the temporal autoregressive structure in the market risks is of higher importance. Interactions between the different property types only occur in the temporally lagged variables. Thus, we see mainly temporal volatility clusters and weak spatial volatility spillovers.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A GENERALIZED CONVOLUTION MODEL FOR MULTIVARIATE NONSTATIONARY SPATIAL PROCESSES
    Majumdar, Anandamayee
    Paul, Debashis
    Bautista, Dianne
    STATISTICA SINICA, 2010, 20 (02) : 675 - 695
  • [32] A Fuzzy Clustering Model for Multivariate Spatial Time Series
    Coppi, Renato
    D'Urso, Pierpaolo
    Giordani, Paolo
    JOURNAL OF CLASSIFICATION, 2010, 27 (01) : 54 - 88
  • [33] Robust trend parameters in a multivariate spatial linear model
    Militino, AF
    Palacios, MB
    Ugarte, MD
    TEST, 2003, 12 (02) : 445 - 457
  • [34] A spatial econometric multivariate model of Okun's law
    Elhorst, J. Paul
    Emili, Silvia
    REGIONAL SCIENCE AND URBAN ECONOMICS, 2022, 93
  • [35] A SPATIAL MULTIVARIATE COUNT MODEL FOR FIRM LOCATION DECISIONS
    Bhat, Chandra R.
    Paleti, Rajesh
    Singh, Palvinder
    JOURNAL OF REGIONAL SCIENCE, 2014, 54 (03) : 462 - 502
  • [36] Capturing Multivariate Spatial Dependence: Model, Estimate and then Predict
    Cressie, Noel
    Burden, Sandy
    Davis, Walter
    Krivitsky, Pavel N.
    Mokhtarian, Payam
    Suesse, Thomas
    Zammit-Mangion, Andrew
    STATISTICAL SCIENCE, 2015, 30 (02) : 170 - 175
  • [37] A comparison of estimators for multivariate ARCH models
    Polasek, W
    Liu, S
    CLASSIFICATION, AUTOMATION, AND NEW MEDIA, 2002, : 375 - 382
  • [38] A MULTIVARIATE SPATIOTEMPORAL CHANGE-POINT MODEL OF OPIOID OVERDOSE DEATHS IN OHIO
    Hepler, Staci A.
    Waller, Lance A.
    Kline, David M.
    ANNALS OF APPLIED STATISTICS, 2021, 15 (03): : 1329 - 1342
  • [39] A REGRESSION MIXTURE MODEL WITH SPATIAL CONSTRAINTS FOR CLUSTERING SPATIOTEMPORAL DATA
    Blekas, K.
    Nikou, C.
    Galatsanos, N.
    Tsekos, N. V.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2008, 17 (05) : 1023 - 1041
  • [40] A Spatiotemporal Model of Polarity and Spatial Gradient Establishment in Caulobacter crescentus
    Xu, Chunrui
    Cao, Yang
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,