Collaborative control for power and temperature tracking of the solid oxide fuel cell under maximum system efficiency

被引:0
|
作者
Huo, Haibo [1 ]
Xu, Sheng [1 ]
Zhu, Hongxiang [1 ]
Wang, Biao [2 ]
Lei, Zhengling [1 ]
Xu, Jingxiang [1 ]
Li, Xi [3 ]
机构
[1] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai Engn Res Ctr Marine Renewable Energy, Shanghai 201306, Peoples R China
[2] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai Engn Res Ctr Hadal Sci & Technol, Shanghai 201306, Peoples R China
[3] Huazhong Univ Sci & Technol, Key Lab Image Proc & Intelligent Control, Sch Artificial Intelligence & Automat, Educ Minist, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cell; Optimal coordinated control; Hybrid algorithm; Efficiency optimization; Fuel starvation; COOPERATIVE CONTROL; CONTROL STRATEGY; MODEL; MANAGEMENT; OPTIMIZATION; DESIGN; SAFETY;
D O I
10.1016/j.egyr.2024.06.042
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solid oxide fuel cell (SOFC) is a highly efficient and green power production technology with broad application prospects. The commercialization of the SOFC faces several control challenges, including load tracking, temperature safety, fuel starvation, and maximum efficiency. For solving these problems, a pre-reforming SOFC system model fueled by methane is first established and validated. Then, to optimize the efficiency of the system and find the relevant optimal operating points (OOPs) of the SOFC, a hybrid optimization approach that combines particle swarm optimization (PSO) with genetic algorithm (GA) is suggested. On this basis, an optimal thermo-electric coordination controller comprising OOPs feedforward controller, reference governor, and flow feedback controller is presented in this study. Simulation findings indicate the excellence of the presented cooperative control strategy for load power tracking and stack temperature control, while maximum efficiency, thermal safety and sufficient fuel are ensured.
引用
收藏
页码:617 / 630
页数:14
相关论文
共 50 条
  • [31] Efficiency and Size Optimization of a General Solid Oxide Fuel Cell System
    陈鹏
    黄跃武
    刘思煦
    Journal of Donghua University(English Edition), 2015, 32 (01) : 113 - 118
  • [32] New Design and Study of the Transient State and Maximum Power Point Tracking of Solid Oxide Fuel Cells Using Fuzzy Control
    Zishan, Farhad
    Montoya, Oscar Danilo
    Giral-Ramirez, Diego Armando
    ENERGIES, 2023, 16 (06)
  • [33] THE CONTROL STRATEGY FOR A SOLID OXIDE FUEL CELL HYBRID SYSTEM
    Milewski, Jarostaw
    Miller, Andrzej
    Dmowski, Antoni
    Biczel, Piotr
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4, 2009, : 13 - 20
  • [34] The Control Strategy for a Solid Oxide Fuel Cell Hybrid System
    Milewski, Jaroslaw
    Miller, Andrzej
    Dmowski, Antoni
    Biczel, Piotr
    2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 1635 - +
  • [35] Dynamics and control of a turbocharged solid oxide fuel cell system
    Mantelli, L.
    Ferrari, M. L.
    Traverso, A.
    APPLIED THERMAL ENGINEERING, 2021, 191
  • [36] Control system for solid oxide fuel cell hybrid systems
    Ferrari, Mario L.
    Magistri, Loredana
    Traverso, Alberto
    Massardo, Aristide F.
    PROCEEDINGS OF THE ASME TURBO EXPO 2005, VOL 5, 2005, : 55 - 63
  • [37] Modeling and Control of Solid Oxide Fuel cell With Predictive Power Control Method
    Kanani, Heidar
    Gorji, Jafar Gholami
    Abbaszadeh, K.
    2020 11TH POWER ELECTRONICS, DRIVE SYSTEMS, AND TECHNOLOGIES CONFERENCE (PEDSTC), 2020,
  • [38] Control of an Energy Integrated Solid Oxide Fuel Cell System
    Georgis, Dimitrios
    Jogwar, Sujit S.
    Almansoori, Ali S.
    Daoutidis, Prodromos
    2011 AMERICAN CONTROL CONFERENCE, 2011,
  • [39] An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system
    Li, YH
    Choi, SS
    Rajakaruna, S
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2005, 20 (02) : 381 - 387
  • [40] Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system
    Kaneko, T.
    Brouwer, J.
    Samuelsen, G. S.
    JOURNAL OF POWER SOURCES, 2006, 160 (01) : 316 - 325