Dynamics and control of a turbocharged solid oxide fuel cell system

被引:19
|
作者
Mantelli, L. [1 ]
Ferrari, M. L. [1 ]
Traverso, A. [1 ]
机构
[1] Univ Genoa, Thermochem Power Grp TPG, DIME, Via Montallegro 1, I-16145 Genoa, Italy
关键词
SOFC; Turbocharger; Control system; Transient Analysis; Hydrogen; Dynamic Simulation; HYBRID SYSTEM; CONTROL STRATEGY; SOFC; POWER; OPTIMIZATION; PERFORMANCE; PROGRESS; DESIGN; BIOGAS; SIMULATION;
D O I
10.1016/j.applthermaleng.2021.116862
中图分类号
O414.1 [热力学];
学科分类号
摘要
The purpose of this paper regards the design and testing of control systems for a 30-kW turbocharged solid oxide fuel cell system fuelled with biogas. The adoption of a turbocharger, instead of a micro gas turbine, for the fuel cell stack pressurisation, is an innovative solution that is expected to decrease the capital cost of such systems and to facilitate their penetration into the energy market. However, not being connected to an electric generator, the turbocharger rotational speed, and thus the air mass flow, cannot be directly controlled as in microturbines. The control of turbocharged solid oxide fuel cell systems is a novel topic, characterised by many technical challenges that have not been addressed before. To regulate the stack temperature, a cold bypass valve is included, connecting the compressor outlet to the turbine inlet. A dynamic model of this system was developed in Matlab-Simulink (R) to analyse the response of the turbocharged solid oxide fuel cell system to a cold bypass valve opening step change. System information obtained from this analysis was used to design and tune four controllers: a conventional proportional integral controller and three different cascade controllers. The controller performance was evaluated under two different scenarios, considering quite aggressive power ramps. The best results were obtained with a cascade controller, where the feedback loop was complemented by a feed-forward contribution based on power demand. This analysis demonstrated that such a control system effectively tracks the fuel cell maximum temperature target, complying with all the system operative constraints.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Surge Prevention Techniques for a Turbocharged Solid Oxide Fuel Cell Hybrid System
    Mantelli, L.
    Ferrari, M. L.
    Traverso, A.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (12):
  • [2] SURGE PREVENTION TECHNIQUES FOR A TURBOCHARGED SOLID OXIDE FUEL CELL HYBRID SYSTEM
    Mantelli, L.
    Ferrari, M. L.
    Traverso, A.
    PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 4, 2021,
  • [3] Off-design performance analysis of a turbocharged solid oxide fuel cell system
    Mantelli, L.
    Ferrari, M. L.
    Magistri, L.
    APPLIED THERMAL ENGINEERING, 2021, 183
  • [4] Estimation and control of solid oxide fuel cell system
    Murshed, A. K. M. M.
    Huang, Biao
    Nandakumar, K.
    COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (01) : 96 - 111
  • [5] Dynamics and Control of a Tubular Solid-Oxide Fuel Cell
    Hajimolana, S. Ahmad
    Soroush, Masoud
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (13) : 6112 - 6125
  • [6] THE CONTROL STRATEGY FOR A SOLID OXIDE FUEL CELL HYBRID SYSTEM
    Milewski, Jarostaw
    Miller, Andrzej
    Dmowski, Antoni
    Biczel, Piotr
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4, 2009, : 13 - 20
  • [7] The Control Strategy for a Solid Oxide Fuel Cell Hybrid System
    Milewski, Jaroslaw
    Miller, Andrzej
    Dmowski, Antoni
    Biczel, Piotr
    2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 1635 - +
  • [8] Control system for solid oxide fuel cell hybrid systems
    Ferrari, Mario L.
    Magistri, Loredana
    Traverso, Alberto
    Massardo, Aristide F.
    PROCEEDINGS OF THE ASME TURBO EXPO 2005, VOL 5, 2005, : 55 - 63
  • [9] Control of an Energy Integrated Solid Oxide Fuel Cell System
    Georgis, Dimitrios
    Jogwar, Sujit S.
    Almansoori, Ali S.
    Daoutidis, Prodromos
    2011 AMERICAN CONTROL CONFERENCE, 2011,
  • [10] Control relevant modeling of planer solid oxide fuel cell system
    Murshed, A. K. M. M.
    Huang, Biao
    Nandakumar, K.
    JOURNAL OF POWER SOURCES, 2007, 163 (02) : 830 - 845