Sandwich-Structured Thermal Interface Materials with High Thermal Conductivity

被引:0
|
作者
Xu, Kang [1 ,2 ,3 ]
Zhang, Zhenbang [2 ]
Wang, Yandong [2 ]
Li, Maohua [2 ]
Chen, Yapeng [2 ]
Kong, Xiangdong [2 ]
Zhang, Jianxiang [2 ]
Yang, Rongjie [2 ]
Li, Linhong [2 ]
Zhou, Yiwei [2 ]
Gong, Ping [2 ]
Qin, Yue [2 ]
Cao, Yong [4 ]
Cai, Tao [2 ,5 ]
Lin, Cheng-Te [2 ,5 ]
Jiang, Nan [2 ,5 ]
Wu, Xinfeng [1 ,3 ]
Yu, Jinhong [2 ,5 ]
机构
[1] Shanghai Polytech Univ, Shanghai Engn Res Ctr Adv Thermal Funct Mat, Sch Energy & Mat, Shanghai Key Lab Engn Mat Applicat & Evaluat,China, Shanghai 201209, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Marine Mat & Related Technol, Zhejiang Key Lab Marine Mat & Protect Technol, Ningbo 315201, Peoples R China
[3] Shanghai Maritime Univ, Merchant Marine Coll, Coll Ocean Sci & Engn, Shanghai 201306, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[5] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
来源
ACS APPLIED ENGINEERING MATERIALS | 2024年 / 2卷 / 06期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
thermal conductivity; carbon fiber; graphene; thermal interface materials; excellent mechanical property; CARBON-FIBERS; FILLERS;
D O I
10.1021/acsaenm.4c00124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As modern electronics advance toward miniaturization and integration, there is an increased demand for effective thermal management solutions. One of the most promising strategies to achieve this is to enhance the thermal transport capacity of thermal interface materials (TIMs) by incorporating fillers. In this study, carbon fiber was used as the framework, and a simple shear stress-oriented approach was employed to orient graphene flatly onto the carbon fiber surface, yielding high thermal conductivity ordered carbon fiber and graphene (OCF/G) films. A sandwich-structured thermal interface material was fabricated by vertically embedding laser-processed optical fibers (OCF/G) into a silicone gel matrix. The vertically arranged OCF/G films, as the heat transfer path, retained their high thermal conductivity, while the interconnected silicone gel network offered superior mechanical properties. The through-plane thermal conductivity of the composites is 37.26 W m(-1) K-1, which is 226 times higher than pure PDMS and 68 times higher than the composite with only carbon fibers loading. Additionally, thermal management applications of the composites as thermal interface materials for electronic device cooling are demonstrated. This construction method provides an effective approach for designing thermal interface materials with enhanced thermal and mechanical performance.
引用
收藏
页码:1572 / 1581
页数:10
相关论文
共 50 条
  • [31] HIGH THERMAL CONDUCTIVITY AlN MATERIALS
    Lloyd, Isabel K.
    ADVANCES IN ELECTROCERAMIC MATERIALS II, 2010, 221 : 115 - 124
  • [32] Metallization of high thermal conductivity materials
    Imanaka, Y
    Notis, MR
    MRS BULLETIN, 2001, 26 (06) : 471 - 476
  • [33] Study on interface structure and thermal conductivity regulation of Cu-In composite thermal interface materials
    Zhang, Jie
    Wu, Nan
    Guo, Hong
    Xie, Zhongnan
    Sun, Mingmei
    Yang, Hui
    Zhang, Ximin
    Liu, Yulin
    He, Xinbo
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 1020 - 1028
  • [34] Synthesis of thermal interface material with high thermal conductivity for high efficiency of LED
    Han, C. J.
    Yu, S. H.
    Hong, S. J.
    Kim, Y. S.
    Han, J. I.
    NANOTECH CONFERENCE & EXPO 2009, VOL 2, TECHNICAL PROCEEDINGS: NANOTECHNOLOGY 2009: LIFE SCIENCES, MEDICINE, DIAGNOSTICS, BIO MATERIALS AND COMPOSITES, 2009, : 432 - 434
  • [35] Synthesis of thermal interface material with high thermal conductivity for high efficiency of LED
    Han, C. J.
    Yu, S. H.
    Hong, S. J.
    Kim, Y. S.
    Han, J. I.
    CLEAN TECHNOLOGY 2009: BIOENERGY, RENEWABLES, STORAGE, GRID, WASTE AND SUSTAINABILITY, 2009, : 337 - 339
  • [36] Microstructural characteristics influencing the effective thermal conductivity of particulate thermal interface materials
    Kanuparthi, S.
    Subbarayan, G.
    Sammakia, B.
    Siegmund, T.
    2008 11TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, VOLS 1-3, 2008, : 227 - +
  • [37] Thermal Conductivity of Thermal Interface Materials Evaluated By a Transient Plane Source Method
    Hsin Wang
    David W. Ihms
    Scott D. Brandenburg
    James R. Salvador
    Journal of Electronic Materials, 2019, 48 : 4697 - 4705
  • [38] Thermal Conductivity Determination of Ga-In Alloys for Thermal Interface Materials Design
    Maivald, Parker
    Sridar, Soumya
    Xiong, Wei
    THERMO, 2022, 2 (01): : 1 - 13
  • [39] Predicting effective thermal conductivity of thermal interface materials using machine learning
    Lu, Xiaoxin
    Cheng, Nan
    Lu, Jibao
    Rong, Sun
    2022 23RD INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, ICEPT, 2022,
  • [40] Thermal Conductivity of Thermal Interface Materials Evaluated By a Transient Plane Source Method
    Wang, Hsin
    Ihms, David W.
    Brandenburg, Scott D.
    Salvador, James R.
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (07) : 4697 - 4705