Sandwich-Structured Thermal Interface Materials with High Thermal Conductivity

被引:0
|
作者
Xu, Kang [1 ,2 ,3 ]
Zhang, Zhenbang [2 ]
Wang, Yandong [2 ]
Li, Maohua [2 ]
Chen, Yapeng [2 ]
Kong, Xiangdong [2 ]
Zhang, Jianxiang [2 ]
Yang, Rongjie [2 ]
Li, Linhong [2 ]
Zhou, Yiwei [2 ]
Gong, Ping [2 ]
Qin, Yue [2 ]
Cao, Yong [4 ]
Cai, Tao [2 ,5 ]
Lin, Cheng-Te [2 ,5 ]
Jiang, Nan [2 ,5 ]
Wu, Xinfeng [1 ,3 ]
Yu, Jinhong [2 ,5 ]
机构
[1] Shanghai Polytech Univ, Shanghai Engn Res Ctr Adv Thermal Funct Mat, Sch Energy & Mat, Shanghai Key Lab Engn Mat Applicat & Evaluat,China, Shanghai 201209, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Marine Mat & Related Technol, Zhejiang Key Lab Marine Mat & Protect Technol, Ningbo 315201, Peoples R China
[3] Shanghai Maritime Univ, Merchant Marine Coll, Coll Ocean Sci & Engn, Shanghai 201306, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[5] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
来源
ACS APPLIED ENGINEERING MATERIALS | 2024年 / 2卷 / 06期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
thermal conductivity; carbon fiber; graphene; thermal interface materials; excellent mechanical property; CARBON-FIBERS; FILLERS;
D O I
10.1021/acsaenm.4c00124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As modern electronics advance toward miniaturization and integration, there is an increased demand for effective thermal management solutions. One of the most promising strategies to achieve this is to enhance the thermal transport capacity of thermal interface materials (TIMs) by incorporating fillers. In this study, carbon fiber was used as the framework, and a simple shear stress-oriented approach was employed to orient graphene flatly onto the carbon fiber surface, yielding high thermal conductivity ordered carbon fiber and graphene (OCF/G) films. A sandwich-structured thermal interface material was fabricated by vertically embedding laser-processed optical fibers (OCF/G) into a silicone gel matrix. The vertically arranged OCF/G films, as the heat transfer path, retained their high thermal conductivity, while the interconnected silicone gel network offered superior mechanical properties. The through-plane thermal conductivity of the composites is 37.26 W m(-1) K-1, which is 226 times higher than pure PDMS and 68 times higher than the composite with only carbon fibers loading. Additionally, thermal management applications of the composites as thermal interface materials for electronic device cooling are demonstrated. This construction method provides an effective approach for designing thermal interface materials with enhanced thermal and mechanical performance.
引用
收藏
页码:1572 / 1581
页数:10
相关论文
共 50 条
  • [21] Constructing Sandwich-Structured Poly(vinyl alcohol) Composite Films with Thermal Conductive and Electrical Performance
    Hu, Jiajun
    Zhang, Tianran
    Wang, Laili
    Shi, Zhongqi
    Xia, Hongyan
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (09) : 12315 - 12326
  • [22] Thermal-induced blister cracking behavior of annealed sandwich-structured TiN/CrAlN films
    Chen, Xiao
    Pang, Xiaolu
    Meng, Jie
    Yang, Huisheng
    CERAMICS INTERNATIONAL, 2018, 44 (06) : 5874 - 5879
  • [23] Graphene/Polyolefin Elastomer Films as Thermal Interface Materials with High Thermal Conductivity, Flexibility, and Good Adhesion
    Sun, Xin
    Wang, Zheng-Yi
    Wang, Yang
    Du, Xiang-Yun
    Liu, Ji-Dong
    Zhang, Cheng
    Li, Weili
    Zhao, Zheng-Bai
    CHEMISTRY OF MATERIALS, 2023, 35 (06) : 2486 - 2494
  • [24] Fabrication of liquid metal/diamond hybrid thermal interface materials with high thermal conductivity and low flowability
    Wendong Wang
    Song Wei
    Xinyu Du
    Zifeng Ding
    Qingsheng Zhu
    Yanxin Qiao
    Xiaojing Wang
    Jingdong Guo
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [25] Fabrication of liquid metal/diamond hybrid thermal interface materials with high thermal conductivity and low flowability
    Wang, Wendong
    Wei, Song
    Du, Xinyu
    Ding, Zifeng
    Zhu, Qingsheng
    Qiao, Yanxin
    Wang, Xiaojing
    Guo, Jingdong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (18)
  • [26] Thermal Interface Materials with Both High Through-Plane Thermal Conductivity and Excellent Elastic Compliance
    Li, Junwei
    Zhang, Yuexing
    Liang, Ting
    Bai, Xue
    Pang, Yunsong
    Zeng, Xiangliang
    Hu, Qinghua
    Tu, Wendian
    Ye, Zhenqiang
    Du, Guoping
    Sun, Rong
    Zeng, Xiaoliang
    CHEMISTRY OF MATERIALS, 2021, 33 (22) : 8926 - 8937
  • [27] High thermal conductivity and remarkable damping composite gels as thermal interface materials for heat dissipation of chip
    Ding, Sheng-Chang
    Fan, Jian-Feng
    He, Dong-Yi
    Cai, Lin-Feng
    Zeng, Xiang-Liang
    Ren, Lin -Lin
    Du, Guo-Ping
    Zeng, Xiao-Liang
    Sun, Rong
    CHIP, 2022, 1 (02):
  • [28] Fabrication of sandwich-structured infrared camouflaged and flexible anti-aging composite for thermal management
    Hou, Keru
    Ma, Haozhe
    Zhao, Hong
    Li, Xiaoyan
    Wang, Jun
    Cai, Zaisheng
    CERAMICS INTERNATIONAL, 2023, 49 (18) : 30304 - 30311
  • [29] HIGH THERMAL CONDUCTIVITY ENCAPSULATING MATERIALS
    SPENARD, JP
    AMERICAN CERAMIC SOCIETY BULLETIN, 1968, 47 (04): : 393 - &
  • [30] Metallization of High Thermal Conductivity Materials
    Yoshihiko Imanaka
    Michael R. Notis
    MRS Bulletin, 2001, 26 : 471 - 476