Carbon encapsulation and vanadium dissolution restraint in hydrated zinc pyrovanadate to enhance energy storage for aqueous zinc-ion batteries

被引:3
|
作者
Liu, Ying [1 ]
Jiang, Xiaohan [1 ]
Li, Xiuping [1 ]
Wang, Xingchao [1 ]
Liu, Bao [2 ]
Sun, Yinglun [3 ]
Wang, Zhaoyang [1 ]
Li, Hengxiang [1 ]
Liu, Lingyang [1 ]
机构
[1] Liaocheng Univ, Sch Chem & Chem Engn, Shandong Prov Key Lab Chem Energy Storage & Novel, Liaocheng 252000, Peoples R China
[2] Jiangsu Univ, Automot Engn Res Inst, Zhenjiang 212013, Peoples R China
[3] Shandong First Med Univ & Shandong Acad Med Sci, Med Sci & Technol Innovat Ctr, Jinan 250000, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc ion battery; Hydrated zinc pyrovanadate; Stability improvement; High temperature applications; HIGH-PERFORMANCE; CATHODE MATERIAL; ZN-3(OH)(2)V2O7-CENTER-DOT-2H(2)O; ELECTRODEPOSITION; CONVERSION; RICH;
D O I
10.1016/j.mtchem.2024.102120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrated vanadates have gained significant attentions as cathode for aqueous zinc-ion batteries (AZIBs) on account of their broad open channels in the structural framework together with the existence of crystal water for stabilizing the structure. Yet, the lower electronic conductivity and the dissolution of vanadium in the electrolyte both affect the specific capacity and stability. In this work, we successfully prepared a unique hydrated zinc pyrovanadate Zn3(OH)2V2O7 & sdot;(H2O)2 with broad tunnel structure through a hydrothermal method. The carbon encapsulation strategy was then used to enhance its specific capacity, rate performanc and cycle stability in AZIBs. Further, the cycle stability was improved using a highly concentrated ZnWiS electrolyte capable of inhibiting vanadium dissolution, and improved the cycling time from one month to one year at low current densities with high capacity retention rate. Additionally, the electrochemical performances under hightemperature conditions of 50 degrees C and 80 degrees C are also investigated. It is found that an increase in temperature can promote the ionic conductivity of the electrolyte and the kinetics of electrode reactions, thus accelerating charge transfer. Due to the excellent high-temperature resistance of the ZnWiS electrolyte, the assembled AZIBs both achieved calendar-level cycle life at 50 degrees C and 80 degrees C. These excellent results demonstrate that the dualstrategy approach of carbon encapsulation to enhance the conductivity and high concentration electrolyte to inhibit vanadium dissolution provides technical support to promote the application of AZIBs in large-scale energy storage devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Interlayer Doping in Layered Vanadium Oxides for Low-cost Energy Storage: Sodium-ion Batteries and Aqueous Zinc-ion Batteries
    Liu, Zhexuan
    Sun, Hemeng
    Qin, Liping
    Cao, Xinxin
    Zhou, Jiang
    Pan, Anqiang
    Fang, Guozhao
    Liang, Shuquan
    CHEMNANOMAT, 2020, 6 (11): : 1553 - 1566
  • [32] Progress on Aqueous Zinc-Ion Batteries
    Deng Z.
    Li M.
    Fang G.
    Liang S.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (02): : 403 - 427
  • [33] Al3+ Introduction Hydrated Vanadium Oxide Induced High Performance for Aqueous Zinc-Ion Batteries
    Xu, Jing
    Zhang, Yu
    Liu, Chenfan
    Cheng, Huanhuan
    Cai, Xuanxuan
    Jia, Dianzeng
    Lin, He
    SMALL, 2022, 18 (47)
  • [34] Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy
    Qiu, Yu
    Yan, Zhaoqian
    Sun, Zhihao
    Guo, Zihao
    Liu, Hongshou
    Du, Benli
    Tian, Shaoyao
    Wang, Peng
    Ding, Han
    Qian, Lei
    INORGANICS, 2023, 11 (03)
  • [35] Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs)
    Al-Amin, Md
    Islam, Saiful
    Shibly, Sayed Ul Alam
    Iffat, Samia
    NANOMATERIALS, 2022, 12 (22)
  • [36] Mitigating cathodic dissolution through interfacial water masking to enhance the longevity of aqueous zinc-ion batteries
    Zhong, Wei
    Shen, Zeyu
    Mao, Jiale
    Zhang, Shichao
    Cheng, Hao
    Kim, Yoonseob
    Lu, Yingying
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (05) : 2059 - 2068
  • [37] Manifesting the Carrier Behavior of a Vanadium Oxide/Carbon Composite Cathode in Aqueous Zinc-Ion Batteries
    Wang, Deqiang
    Chen, Jiadong
    Liang, Wenhao
    Xue, Geng
    Li, Jun
    Jin, Huile
    Wang, Jichang
    Wang, Shun
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (14): : 5792 - 5800
  • [38] Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries
    Liu, Chaofeng
    Neale, Zachary
    Zheng, Jiqi
    Jia, Xiaoxiao
    Huang, Juanjuan
    Yan, Mengyu
    Tian, Meng
    Wang, Mingshan
    Yang, Jihui
    Cao, Guozhong
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) : 2273 - 2285
  • [39] Unleashing Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries
    Zafar, Saad
    Lochab, Bimlesh
    ACS OMEGA, 2024, 9 (49): : 47920 - 47938
  • [40] Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries
    Hongmei Cao
    Shenzhen Deng
    Zhiwei Tie
    Jinlei Tian
    Lili Liu
    Zhiqiang Niu
    Science China(Chemistry), 2022, (09) : 1725 - 1732