Carbon encapsulation and vanadium dissolution restraint in hydrated zinc pyrovanadate to enhance energy storage for aqueous zinc-ion batteries

被引:3
|
作者
Liu, Ying [1 ]
Jiang, Xiaohan [1 ]
Li, Xiuping [1 ]
Wang, Xingchao [1 ]
Liu, Bao [2 ]
Sun, Yinglun [3 ]
Wang, Zhaoyang [1 ]
Li, Hengxiang [1 ]
Liu, Lingyang [1 ]
机构
[1] Liaocheng Univ, Sch Chem & Chem Engn, Shandong Prov Key Lab Chem Energy Storage & Novel, Liaocheng 252000, Peoples R China
[2] Jiangsu Univ, Automot Engn Res Inst, Zhenjiang 212013, Peoples R China
[3] Shandong First Med Univ & Shandong Acad Med Sci, Med Sci & Technol Innovat Ctr, Jinan 250000, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc ion battery; Hydrated zinc pyrovanadate; Stability improvement; High temperature applications; HIGH-PERFORMANCE; CATHODE MATERIAL; ZN-3(OH)(2)V2O7-CENTER-DOT-2H(2)O; ELECTRODEPOSITION; CONVERSION; RICH;
D O I
10.1016/j.mtchem.2024.102120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrated vanadates have gained significant attentions as cathode for aqueous zinc-ion batteries (AZIBs) on account of their broad open channels in the structural framework together with the existence of crystal water for stabilizing the structure. Yet, the lower electronic conductivity and the dissolution of vanadium in the electrolyte both affect the specific capacity and stability. In this work, we successfully prepared a unique hydrated zinc pyrovanadate Zn3(OH)2V2O7 & sdot;(H2O)2 with broad tunnel structure through a hydrothermal method. The carbon encapsulation strategy was then used to enhance its specific capacity, rate performanc and cycle stability in AZIBs. Further, the cycle stability was improved using a highly concentrated ZnWiS electrolyte capable of inhibiting vanadium dissolution, and improved the cycling time from one month to one year at low current densities with high capacity retention rate. Additionally, the electrochemical performances under hightemperature conditions of 50 degrees C and 80 degrees C are also investigated. It is found that an increase in temperature can promote the ionic conductivity of the electrolyte and the kinetics of electrode reactions, thus accelerating charge transfer. Due to the excellent high-temperature resistance of the ZnWiS electrolyte, the assembled AZIBs both achieved calendar-level cycle life at 50 degrees C and 80 degrees C. These excellent results demonstrate that the dualstrategy approach of carbon encapsulation to enhance the conductivity and high concentration electrolyte to inhibit vanadium dissolution provides technical support to promote the application of AZIBs in large-scale energy storage devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes
    Wang, Lulu
    Huang, Kuo-Wei
    Chen, Jitao
    Zheng, Junrong
    SCIENCE ADVANCES, 2019, 5 (10)
  • [22] Interface engineering of heterostructured vanadium oxides for enhanced energy storage in Zinc-Ion batteries
    Wu, Tzu-Ho
    Chen, Jheng-An
    Su, Jia-He
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 654 : 308 - 316
  • [23] Zinc ion modulation of hydrated vanadium pentoxide for high-performance aqueous zinc ion batteries
    Wu, Jiadong
    Yang, Linyu
    Wang, Shuying
    Yao, Xiaolong
    Wang, Jun
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    JOURNAL OF POWER SOURCES, 2024, 595
  • [24] Zinc ion modulation of hydrated vanadium pentoxide for high-performance aqueous zinc ion batteries
    Wu, Jiadong
    Yang, Linyu
    Wang, Shuying
    Yao, Xiaolong
    Wang, Jun
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    Journal of Power Sources, 2024, 595
  • [25] Boosting zinc-ion storage in hydrated vanadium oxides via migration regulation
    Liu, Huibin
    Hou, Xiaohan
    Fang, Tiantian
    Zhang, Qicheng
    Gong, Ning
    Peng, Wenchao
    Li, Yang
    Zhang, Fengbao
    Fan, Xiaobin
    ENERGY STORAGE MATERIALS, 2023, 55 : 279 - 288
  • [26] Realization restrain vanadium dissolution in aqueous zinc-ion batteries with amphoteric ionic polyacrylamide gel electrolyte
    Liu, Mengjie
    Qin, Mulan
    Fang, Guozhao
    Liang, Shuquan
    Wang, Xianyou
    Luo, Zhigao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 959
  • [27] Recent Progresses on Vanadium Sulfide Cathodes for Aqueous Zinc-Ion Batteries
    Hu, Enze
    Li, Huifang
    Zhang, Yizhou
    Wang, Xiaojun
    Liu, Zhiming
    ENERGIES, 2023, 16 (02)
  • [28] Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries
    Wan, Fang
    Niu, Zhiqiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (46) : 16358 - 16367
  • [29] Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries
    Li, Jianwei
    Luo, Ningjing
    Wan, Feng
    Zhao, Siyu
    Li, Zhuangnan
    Li, Wenyao
    Guo, Jian
    Shearing, Paul R.
    Brett, Dan J. L.
    Carmalt, Claire J.
    Chai, Guoliang
    He, Guanjie
    Parkin, Ivan P.
    NANOSCALE, 2020, 12 (40) : 20638 - 20648
  • [30] Rare earth metals ion intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries
    Hu, Bingbing
    Yang, Xinyao
    Li, Dongshan
    Jiang, Jiayu
    Liu, Chenglin
    Deng, Yu
    Pu, Hong
    Ma, Guangqiang
    Li, Zhi
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 8421 - 8428