DVSOD: RGB-D Video Salient Object Detection

被引:0
|
作者
Li, Jingjing [1 ]
Ji, Wei [1 ,2 ]
Wang, Size [1 ]
Li, Wenbo [2 ]
Cheng, Li [1 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
[2] Samsung Res Amer AI Ctr, New York, NY 10010 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SEGMENTATION; TRACKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Salient object detection (SOD) aims to identify standout elements in a scene, with recent advancements primarily focused on integrating depth data (RGB-D) or temporal data from videos to enhance SOD in complex scenes. However, the unison of two types of crucial information remains largely underexplored due to data constraints. To bridge this gap, we in this work introduce the DViSal dataset, fueling further research in the emerging field of RGB-D video salient object detection (DVSOD). Our dataset features 237 diverse RGB-D videos alongside comprehensive annotations, including object and instance-level markings, as well as bounding boxes and scribbles. These resources enable a broad scope for potential research directions. We also conduct benchmarking experiments using various SOD models, affirming the efficacy of multimodal video input for salient object detection. Lastly, we highlight some intriguing findings and promising future research avenues. To foster growth in this field, our dataset and benchmark results are publicly accessible at: https: // dvsod. github. io/.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A salient object detection algorithm based on RGB-D images
    Song, Can
    Wu, Jin
    Deng, Huiping
    Zhu, Lei
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1692 - 1697
  • [22] MobileSal: Extremely Efficient RGB-D Salient Object Detection
    Wu, Yu-Huan
    Liu, Yun
    Xu, Jun
    Bian, Jia-Wang
    Gu, Yu-Chao
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10261 - 10269
  • [23] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [24] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    [J]. NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [25] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [26] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    [J]. PATTERN RECOGNITION, 2024, 150
  • [27] Feature Calibrating and Fusing Network for RGB-D Salient Object Detection
    Zhang, Qiang
    Qin, Qi
    Yang, Yang
    Jiao, Qiang
    Han, Jungong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1493 - 1507
  • [28] Triple-Complementary Network for RGB-D Salient Object Detection
    Huang, Rui
    Xing, Yan
    Zou, Yaobin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 775 - 779
  • [29] GroupTransNet: Group transformer network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    [J]. NEUROCOMPUTING, 2024, 594
  • [30] Self-Supervised Pretraining for RGB-D Salient Object Detection
    Zhao, Xiaoqi
    Pang, Youwei
    Zhang, Lihe
    Lu, Huchuan
    Ruan, Xiang
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3463 - 3471