The 3D Monolithically Integrated Hardware Based Neural System with Enhanced Memory Window of the Volatile and Non-Volatile Devices

被引:1
|
作者
Jeon, Yu-Rim [1 ]
Seo, Donguk [2 ]
Lee, Yoonmyung [2 ]
Akinwande, Deji [1 ]
Choi, Changhwan [3 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78172 USA
[2] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
[3] Hanyang Univ, Div Mat Sci & Engn, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
3D neuromorphic system; CMOS integration; convolutional neural network; high k metal oxide; RRAM; synaptic device; transistor; wafer bonding;
D O I
10.1002/advs.202402667
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D neuromorphic hardware system is first demonstrated in neuromorphic application as on-chip level by integrating array devices with CMOS circuits after wafer bonding (WB) and interconnection process. The memory window of synaptic device is degraded after WB and 3 Dimesional (3D) integration due to process defects and thermal stress. To address this degradation, Ag diffusion in materials of Ta2O5 and HfO2 is studied in a volatile memristor, furthermore, the interconnection and gate metal Ru are investigated to reduce defective traps of gate interface in non-volatile memory devices. As a result, a memory window is improved over 106 in both types of devices. Improved and 3D integrated 12 x 14 array devices are identified in the synaptic characteristics according to the change of the synaptic weight from the interconnected Test Element Group (TEG) of the Complementary Metal Oxide Semiconductor (CMOS) circuits. The trained array devices present recognizable image of letters, achieving an accuracy rate of 92% when utilizing a convolutional neural network, comparing the normalized accuracy of 93% achieved by an ideal synapse device. This study proposes to modulate the memory windows up to 106 in an integrated hardware-based neural system, considering the possibility of device degradation in both volatile and non-volatile memory devices demonstrated by the hardware neural system. Monolithically 3D integrated on-chip neural system is demonstrated using CMOS circuits, considering the degradation of memory window after wafer bonding and interconnection processes. Ag diffusion in bi-layer is studied in volatile memristors. Additionally, interconnection and gate metal are investigated to reduce defective traps in non-volatile transistor. A memory window is improved over 106 in both types of devices. image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Near Volatile and Non-Volatile Memory Processing in 3D Systems
    Hosseini, Maryam S.
    Ebrahimi, Masoumeh
    Yaghini, Pooria
    Bagherzadeh, Nader
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1657 - 1664
  • [2] Graphene Based Non-Volatile Memory Devices
    Wang, Xiaomu
    Xie, Weiguang
    Xu, Jian-Bin
    [J]. ADVANCED MATERIALS, 2014, 26 (31) : 5496 - 5503
  • [3] Nanocrystal non-volatile memory devices
    Horvath, Zs. J.
    Basa, P.
    [J]. THIN FILMS AND POROUS MATERIALS, 2009, 609 : 1 - 9
  • [4] Non-volatile memory devices based on Ge nanocrystals
    Vasilache, Dan
    Cismaru, Alina
    Dragoman, Mircea
    Stavarache, Ionel
    Palade, Catalin
    Lepadatu, Ana-Maria
    Ciurea, Magdalena Lidia
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (02): : 255 - 259
  • [5] Non-volatile Memory Devices Based on Chalcogenide Materials
    Wang, Fei
    Wu, Xiaolong
    [J]. PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, VOLS 1-3, 2009, : 5 - +
  • [6] Non-volatile Memory Devices Based on Diphenyl Bithiophenes
    Canesi, E. V.
    Bertarelli, C.
    Bianco, A.
    Caironi, M.
    Dassa, G.
    Natali, D.
    Rottigni, A.
    Sampietro, M.
    Zerbi, G.
    [J]. SMART MATERIALS & MICRO/NANOSYSTEMS, 2009, 54 : 458 - 463
  • [7] Bioorganic nanodots for non-volatile memory devices
    Amdursky, Nadav
    Shalev, Gil
    Handelman, Amir
    Litsyn, Simon
    Natan, Amir
    Roizin, Yakov
    Rosenwaks, Yossi
    Szwarcman, Daniel
    Rosenman, Gil
    [J]. APL MATERIALS, 2013, 1 (06):
  • [8] Organic Non-volatile Memory Devices Based on a Ferroelectric Polymer
    Kalbitz, R.
    Fruebing, P.
    Gerhard, R.
    Taylor, D. M.
    [J]. 2011 14TH INTERNATIONAL SYMPOSIUM ON ELECTRETS (ISE), 2011, : 207 - +
  • [9] Silicon nanocrystal-based non-volatile memory devices
    Ng, CY
    Chen, TP
    Sreeduth, D
    Chen, Q
    Ding, L
    Du, A
    [J]. THIN SOLID FILMS, 2006, 504 (1-2) : 25 - 27
  • [10] Integrated photonics with programmable non-volatile memory
    Song, Jun-Feng
    Luo, Xian-Shu
    Lim, Andy Eu-Jin
    Li, Chao
    Fang, Qing
    Liow, Tsung-Yang
    Jia, Lian-Xi
    Tu, Xiao-Guang
    Huang, Ying
    Zhou, Hai-Feng
    Lo, Guo-Qiang
    [J]. SCIENTIFIC REPORTS, 2016, 6