OPTIMAL BOUNDARY REGULARITY AND A HOPF-TYPE LEMMA FOR DIRICHLET PROBLEMS INVOLVING THE LOGARITHMIC LAPLACIAN

被引:0
|
作者
Hernandez-Santamaria, Victor [1 ]
Rios, Luis Fernando Lopez [2 ]
Saldana, Alberto [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Circuito Exterior,Ciudad Univ, Coyoacan 04510, Ciudad De Mexic, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Circuito Escolar S-N,Ciudad Univ, Ciudad De Mexico 04510, Mexico
关键词
Hopf lemma; Kelvin transform; uniqueness by convexity; GREEN-FUNCTION;
D O I
10.3934/dcds.2024084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the optimal boundary regularity of solutions to Dirichlet problems involving the logarithmic Laplacian. Our proofs are based on the construction of suitable barriers via the Kelvin transform and direct computations. As applications of our results, we show a Hopf-type lemma for nonnegative weak solutions and the uniqueness of solutions to some nonlinear problems.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [21] Boundary Lipschitz regularity and the Hopf lemma on Reifenberg domains for fully nonlinear elliptic equations
    Lian, Yuanyuan
    Xu, Wenxiu
    Zhang, Kai
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 343 - 357
  • [22] Boundary Lipschitz regularity and the Hopf lemma on Reifenberg domains for fully nonlinear elliptic equations
    Yuanyuan Lian
    Wenxiu Xu
    Kai Zhang
    manuscripta mathematica, 2021, 166 : 343 - 357
  • [23] Dead cores of singular Dirichlet boundary value problems with ϕ-Laplacian
    Ravi P. Agarwal
    Donal O’Regan
    Svatoslav Staněk
    Applications of Mathematics, 2008, 53 : 381 - 399
  • [24] Dead cores of singular Dirichlet boundary value problems with φ-Laplacian
    Agarwal, Ravi P.
    O'Regan, Donal
    Stanek, Svatoslav
    APPLICATIONS OF MATHEMATICS, 2008, 53 (04) : 381 - 399
  • [25] Examples of optimal Holder regularity in semilinear equations involving the fractional Laplacian
    Csato, Gyula
    Mas, Albert
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 255
  • [26] Existence results for some Dirichlet problems involving Finsler–Laplacian operator
    I.-I. Mezei
    O. Vas
    Acta Mathematica Hungarica, 2019, 157 : 39 - 53
  • [27] Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems
    Cianchi, Andrea
    Maz'ya, Vladimir
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (03) : 571 - 595
  • [28] Time optimal problems with Dirichlet boundary controls
    Arada, N
    Raymond, JP
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (06) : 1549 - 1570
  • [29] ON THE REGULARITY OF THE SOLUTIONS OF DIRICHLET OPTIMAL CONTROL PROBLEMS IN POLYGONAL DOMAINS
    Apel, Thomas
    Mateos, Mariano
    Pfefferer, Johannes
    Roesch, Arnd
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (06) : 3620 - 3641
  • [30] OPTIMAL REGULARITY OF SOLUTIONS TO NO-SIGN OBSTACLE-TYPE PROBLEMS FOR THE SUB-LAPLACIAN
    Magnani, Valentino
    Minne, Andreas
    ANALYSIS & PDE, 2022, 15 (06): : 1429 - 1456