Boundary Lipschitz regularity and the Hopf lemma on Reifenberg domains for fully nonlinear elliptic equations

被引:4
|
作者
Lian, Yuanyuan [2 ]
Xu, Wenxiu [1 ]
Zhang, Kai [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
VISCOSITY SOLUTIONS;
D O I
10.1007/s00229-020-01246-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the boundary Lipschitz regularity and the Hopf Lemma by a unified method on Reifenberg domains for fully nonlinear elliptic equations. Precisely, if the domain Omega satisfies the exterior Reifenberg C-1,C-Dini condition at x(0) is an element of partial derivative Omega (see Definition 1.3), the solution is Lipschitz continuous at x(0); if Omega satisfies the interior Reifenberg C-1,C-Dini condition at x(0) (see Definition 1.4), the Hopf lemma holds at x(0). Our paper extends the results under the usual C-1,C-Dini condition.
引用
收藏
页码:343 / 357
页数:15
相关论文
共 50 条