Using Graphs to Perform Effective Sensor-Based Human Activity Recognition in Smart Homes

被引:0
|
作者
Srivatsa, P. [1 ]
Ploetz, Thomas [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
human-centered computing; ubiquitous and mobile computing; machine learning; smart-home; human activity recognition; pattern recognition;
D O I
10.3390/s24123944
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
There has been a resurgence of applications focused on human activity recognition (HAR) in smart homes, especially in the field of ambient intelligence and assisted-living technologies. However, such applications present numerous significant challenges to any automated analysis system operating in the real world, such as variability, sparsity, and noise in sensor measurements. Although state-of-the-art HAR systems have made considerable strides in addressing some of these challenges, they suffer from a practical limitation: they require successful pre-segmentation of continuous sensor data streams prior to automated recognition, i.e., they assume that an oracle is present during deployment, and that it is capable of identifying time windows of interest across discrete sensor events. To overcome this limitation, we propose a novel graph-guided neural network approach that performs activity recognition by learning explicit co-firing relationships between sensors. We accomplish this by learning a more expressive graph structure representing the sensor network in a smart home in a data-driven manner. Our approach maps discrete input sensor measurements to a feature space through the application of attention mechanisms and hierarchical pooling of node embeddings. We demonstrate the effectiveness of our proposed approach by conducting several experiments on CASAS datasets, showing that the resulting graph-guided neural network outperforms the state-of-the-art method for HAR in smart homes across multiple datasets and by large margins. These results are promising because they push HAR for smart homes closer to real-world applications.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Evaluation of machine learning approaches for sensor-based human activity recognition
    Yousif, Hala Muhanad
    Abdulah, Dhahir Abdulhade
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1183 - 1200
  • [42] SenseMLP: a parallel MLP architecture for sensor-based human activity recognition
    Li, Weilin
    Guo, Jiaming
    Wu, Hong
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [43] Comparison of Sensor-Based Datasets for Human Activity Recognition in Wearable IoT
    Khare, Shivanjali
    Sarkar, Sayani
    Totaro, Michael
    2020 IEEE 6TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2020,
  • [44] Sensor-Based Human Activity Recognition in a Multi-user Scenario
    Wang, Liang
    Gu, Tao
    Tao, Xianping
    Lu, Jian
    AMBIENT INTELLIGENCE, PROCEEDINGS, 2009, 5859 : 78 - +
  • [45] Sensor-based and vision-based human activity recognition: A comprehensive survey
    Dang, L. Minh
    Min, Kyungbok
    Wang, Hanxiang
    Piran, Md. Jalil
    Lee, Cheol Hee
    Moon, Hyeonjoon
    PATTERN RECOGNITION, 2020, 108 (108)
  • [46] Deep Triplet Networks with Attention for Sensor-based Human Activity Recognition
    Khaertdinov, Bulat
    Ghaleb, Esam
    Asteriadis, Stylianos
    2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2021,
  • [47] Deep learning and model personalization in sensor-based human activity recognition
    Ferrari A.
    Micucci D.
    Mobilio M.
    Napoletano P.
    Journal of Reliable Intelligent Environments, 2023, 9 (01) : 27 - 39
  • [48] AutoAugHAR: Automated Data Augmentation for Sensor-based Human Activity Recognition
    Zhou, Yexu
    Zhao, Haibin
    Huang, Yiran
    Roeddiger, Tobias
    Kurnaz, Murat
    Riedel, Till
    Beigl, Michael
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (02):
  • [49] LOCAL AND GLOBAL ALIGNMENTS FOR GENERALIZABLE SENSOR-BASED HUMAN ACTIVITY RECOGNITION
    Lu, Wang
    Wang, Jindong
    Chen, Yiqiang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3833 - 3837
  • [50] A Hybrid Deep Neural Networks for Sensor-based Human Activity Recognition
    Wang, Shujuan
    Zhu, Xiaoke
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 486 - 491