Using Graphs to Perform Effective Sensor-Based Human Activity Recognition in Smart Homes

被引:0
|
作者
Srivatsa, P. [1 ]
Ploetz, Thomas [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
human-centered computing; ubiquitous and mobile computing; machine learning; smart-home; human activity recognition; pattern recognition;
D O I
10.3390/s24123944
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
There has been a resurgence of applications focused on human activity recognition (HAR) in smart homes, especially in the field of ambient intelligence and assisted-living technologies. However, such applications present numerous significant challenges to any automated analysis system operating in the real world, such as variability, sparsity, and noise in sensor measurements. Although state-of-the-art HAR systems have made considerable strides in addressing some of these challenges, they suffer from a practical limitation: they require successful pre-segmentation of continuous sensor data streams prior to automated recognition, i.e., they assume that an oracle is present during deployment, and that it is capable of identifying time windows of interest across discrete sensor events. To overcome this limitation, we propose a novel graph-guided neural network approach that performs activity recognition by learning explicit co-firing relationships between sensors. We accomplish this by learning a more expressive graph structure representing the sensor network in a smart home in a data-driven manner. Our approach maps discrete input sensor measurements to a feature space through the application of attention mechanisms and hierarchical pooling of node embeddings. We demonstrate the effectiveness of our proposed approach by conducting several experiments on CASAS datasets, showing that the resulting graph-guided neural network outperforms the state-of-the-art method for HAR in smart homes across multiple datasets and by large margins. These results are promising because they push HAR for smart homes closer to real-world applications.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Nonparametric Activity Recognition System in Smart Homes Based on Heterogeneous Sensor Data
    Wu, Chao-Lin
    Chen, Ya-Hung
    Chien, Yi-Wei
    Tsai, Ming-Je
    Li, Ting-Ying
    Cheng, Pei-Hsuan
    Fu, Li-Chen
    Chen, Cheryl Chia-Hui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2019, 16 (02) : 678 - 690
  • [32] Activity Recognition System for Dementia in Smart Homes based on Wearable Sensor Data
    Su, Chun-Fang
    Fu, Li-Chen
    Chien, Yi-Wei
    Li, Ting-Ying
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 463 - 469
  • [33] Multiple-instance domain adaptation for cost-effective sensor-based human activity recognition
    Prabono, Aria Ghora
    Yahya, Bernardo Nugroho
    Lee, Seok-Lyong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 133 : 114 - 123
  • [34] A Comparative Study: Toward an Effective Convolutional Neural Network Architecture for Sensor-Based Human Activity Recognition
    Zhao Zhongkai
    Kobayashi, Satoshi
    Kondo, Kazuma
    Hasegawa, Tatsuhito
    Koshino, Makoto
    IEEE ACCESS, 2022, 10 : 20547 - 20558
  • [35] A Comparative Study: Toward an Effective Convolutional Neural Network Architecture for Sensor-Based Human Activity Recognition
    Zhongkai, Zhao
    Kobayashi, Satoshi
    Kondo, Kazuma
    Hasegawa, Tatsuhito
    Koshino, Makoto
    IEEE Access, 2022, 10 : 20547 - 20558
  • [36] Sensor-Based Datasets for Human Activity Recognition - A Systematic Review of Literature
    De-La-Hoz-Franco, Emiro
    Ariza-Colpas, Paola
    Medina Quero, Javier
    Espinilla, Macarena
    IEEE ACCESS, 2018, 6 : 59192 - 59210
  • [37] Automatic Labeling Framework for Wearable Sensor-based Human Activity Recognition
    Liang, Guanhao
    Luo, Qingsheng
    Jia, Yan
    SENSORS AND MATERIALS, 2018, 30 (09) : 2049 - 2071
  • [38] Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition
    Fong, Simon
    Song, Wei
    Cho, Kyungeun
    Wong, Raymond
    Wong, Kelvin K. L.
    SENSORS, 2017, 17 (03)
  • [39] A Practical Wearable Sensor-based Human Activity Recognition Research Pipeline
    Liu, Hui
    Hartmann, Yale
    Schultz, Tanja
    HEALTHINF: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF, 2021, : 847 - 856
  • [40] FedCLAR: Federated Clustering for Personalized Sensor-Based Human Activity Recognition
    Presotto, Riccardo
    Civitarese, Gabriele
    Bettini, Claudio
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2022, : 227 - 236