Autofluorescence lifetime flow cytometry with time-correlated single photon counting

被引:2
|
作者
Samimi, Kayvan [1 ]
Pasachhe, Ojaswi [1 ]
Guzman, Emmanuel Contreras [1 ]
Riendeau, Jeremiah [1 ]
Gillette, Amani A. [1 ]
Pham, Dan L. [2 ]
Wiech, Kasia J. [2 ]
Moore, Darcie L. [3 ]
Skala, Melissa C. [1 ,2 ]
机构
[1] Morgridge Inst Res, Madison, WI 53715 USA
[2] Univ Wisconsin, Dept Biomed Engn, Madison, WI USA
[3] Univ Wisconsin, Dept Neurosci, Madison, WI 53705 USA
基金
美国国家卫生研究院;
关键词
flow cytometry; fluorescence lifetime; label-free sensing; metabolism; NAD(P)H; single-cell analysis; time tagger; FLUORESCENCE-LIFETIME; MICROSCOPY; NADH; QUIESCENCE; NAD(P)H; CELLS;
D O I
10.1002/cyto.a.24883
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Autofluorescence lifetime imaging microscopy (FLIM) is sensitive to metabolic changes in single cells based on changes in the protein-binding activities of the metabolic co-enzymes NAD(P)H. However, FLIM typically relies on time-correlated single-photon counting (TCSPC) detection electronics on laser-scanning microscopes, which are expensive, low-throughput, and require substantial post-processing time for cell segmentation and analysis. Here, we present a fluorescence lifetime-sensitive flow cytometer that offers the same TCSPC temporal resolution in a flow geometry, with low-cost single-photon excitation sources, a throughput of tens of cells per second, and real-time single-cell analysis. The system uses a 375 nm picosecond-pulsed diode laser operating at 50 MHz, alkali photomultiplier tubes, an FPGA-based time tagger, and can provide real-time phasor-based classification (i.e., gating) of flowing cells. A CMOS camera produces simultaneous brightfield images using far-red illumination. A second PMT provides two-color analysis. Cells are injected into the microfluidic channel using a syringe pump at 2-5 mm/s with nearly 5 ms integration time per cell, resulting in a light dose of 2.65 J/cm2 that is well below damage thresholds (25 J/cm2 at 375 nm). Our results show that cells remain viable after measurement, and the system is sensitive to autofluorescence lifetime changes in Jurkat T cells with metabolic perturbation (sodium cyanide), quiescent versus activated (CD3/CD28/CD2) primary human T cells, and quiescent versus activated primary adult mouse neural stem cells, consistent with prior studies using multiphoton FLIM. This TCSPC-based autofluorescence lifetime flow cytometer provides a valuable label-free method for real-time analysis of single-cell function and metabolism with higher throughput than laser-scanning microscopy systems.
引用
收藏
页码:607 / 620
页数:14
相关论文
共 50 条
  • [1] Fluorescence lifetime imaging by time-correlated single-photon counting
    Becker, W
    Bergmann, A
    Hink, MA
    König, K
    Benndorf, K
    Biskup, C
    MICROSCOPY RESEARCH AND TECHNIQUE, 2004, 63 (01) : 58 - 66
  • [2] Fluorescence lifetime imaging based on time-correlated single photon counting
    Sheng C.
    Li T.
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2010, 22 (08): : 1731 - 1734
  • [3] Time-correlated single-photon counting on a chip
    Boas, Gary
    Biophotonics International, 2007, 14 (11): : 15 - 16
  • [4] Photon Efficiency Optimization in Time-Correlated Single Photon Counting Technique for Fluorescence Lifetime Imaging Systems
    Turgeman, Lior
    Fixler, Dror
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (06) : 1571 - 1579
  • [5] Two-photon Excitation Fluorescence Lifetime Imaging Based on Time-Correlated Single Photon Counting
    Tang, Hejing
    Sheng, Cuixia
    GREEN POWER, MATERIALS AND MANUFACTURING TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2011, 84-85 : 572 - 576
  • [6] Multi-photon contamination in the time-correlated single photon counting
    Wang, Zhaomin, 2000, Chinese Optical Soc, China (20):
  • [7] Multiplexed single-photon counting .1. A time-correlated fluorescence lifetime camera
    McLoskey, D
    Birch, DJS
    Sanderson, A
    Suhling, K
    Welch, E
    Hicks, PJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (06): : 2228 - 2237
  • [8] FLUORESCENCE LIFETIME MEASUREMENTS UNDER A MICROSCOPE BY THE TIME-CORRELATED SINGLE-PHOTON COUNTING TECHNIQUE
    MINAMI, T
    KAWAHIGASHI, M
    SAKAI, Y
    SHIMAMOTO, K
    HIRAYAMA, S
    JOURNAL OF LUMINESCENCE, 1986, 35 (05) : 247 - 253
  • [9] Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting
    Becker, W
    Bergmann, A
    Haustein, E
    Petrasek, Z
    Schwille, P
    Biskup, C
    Kelbauskas, L
    Benndorf, K
    Klöcker, N
    Anhut, T
    Riemann, I
    König, K
    MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (03) : 186 - 195
  • [10] FLEXIBLE INSTRUMENT FOR TIME-CORRELATED SINGLE-PHOTON COUNTING
    BECKER, W
    STIEL, H
    KLOSE, E
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1991, 62 (12): : 2991 - 2996