Improved Algorithms for Maximum Satisfiability and Its Special Cases

被引:0
|
作者
Brilliantov, Kirill [1 ]
Alferov, Vasily
Bliznets, Ivan [2 ]
机构
[1] Constructor Univ, Bremen, Germany
[2] Univ Utrecht, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
UPPER-BOUNDS; MAXSAT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Maximum Satisfiability (MAXSAT) problem is an optimization version of the Satisfiability problem (SAT) in which one is given a CNF formula with n variables and needs to find the maximum number of simultaneously satisfiable clauses. Recent works achieved significant progress in proving new upper bounds on the worst-case computational complexity of MAXSAT. All these works reduce general MAXSAT to a special case of MAXSAT where each variable appears a small number of times. So, it is important to design fast algorithms for (n, k)-MAXSAT to construct an efficient exact algorithm for MAXSAT. (n, k)-MAXSAT is a special case of MAXSAT where each variable appears at most k times in the input formula. For the (n, 3)-MAXSAT problem, we design a O*(1.1749(n)) algorithm improving on the previous record running time of O*(1.191(n)). For the (n, 4)-MAXSAT problem, we construct a O*(1.3803(n)) algorithm improving on the previous best running time of O*(1.4254(n)). Using the results, we develop a O*(1.0911(L)) algorithm for the MAXSAT where L is a length of the input formula which improves previous algorithm with O*(1.0927(L)) running time.
引用
收藏
页码:3898 / 3905
页数:8
相关论文
共 50 条
  • [41] Diagnosability Testing with Satisfiability Algorithms
    Rintanen, Jussi
    Grastien, Alban
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 532 - 537
  • [42] Evolutionary algorithms for the satisfiability problem
    Gottlieb, J
    Marchiori, E
    Rossi, C
    EVOLUTIONARY COMPUTATION, 2002, 10 (01) : 35 - 50
  • [43] Metalevel Algorithms for Variant Satisfiability
    Skeirik, Stephen
    Meseguer, Jose
    REWRITING LOGIC AND ITS APPLICATIONS, WRLA 2016, 2016, 9942 : 167 - 184
  • [44] Fast Algorithms for Energy Games in Special Cases
    Forster, Sebastian
    Skarlatos, Antonis
    de Vos, Tijn
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2023, 390 : 236 - 252
  • [45] A SPECIAL PLANAR SATISFIABILITY PROBLEM AND A CONSEQUENCE OF ITS NP-COMPLETENESS
    KRATOCHVIL, J
    DISCRETE APPLIED MATHEMATICS, 1994, 52 (03) : 233 - 252
  • [46] Improved algorithms for the K-maximum subarray problem
    Bae, Sung Eun
    Takaoka, Tadao
    Computer Journal, 2006, 49 (03): : 358 - 374
  • [47] Improved algorithms for the k maximum-sums problems
    Cheng, CH
    Chen, KY
    Tien, WC
    Chao, KM
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 799 - 808
  • [48] Clause tableaux for maximum and minimum satisfiability
    Argelich, Josep
    Li, Chu Min
    Manya, Felip
    Soler, Joan Ramon
    LOGIC JOURNAL OF THE IGPL, 2021, 29 (01) : 7 - 27
  • [49] Improved algorithms for the K-maximum subarray problem
    Bae, SE
    Takaoka, T
    COMPUTER JOURNAL, 2006, 49 (03): : 358 - 374
  • [50] Quantum Algorithm for Variant Maximum Satisfiability
    Alasow, Abdirahman
    Jin, Peter
    Perkowski, Marek
    ENTROPY, 2022, 24 (11)