Improved Algorithms for Maximum Satisfiability and Its Special Cases

被引:0
|
作者
Brilliantov, Kirill [1 ]
Alferov, Vasily
Bliznets, Ivan [2 ]
机构
[1] Constructor Univ, Bremen, Germany
[2] Univ Utrecht, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
UPPER-BOUNDS; MAXSAT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Maximum Satisfiability (MAXSAT) problem is an optimization version of the Satisfiability problem (SAT) in which one is given a CNF formula with n variables and needs to find the maximum number of simultaneously satisfiable clauses. Recent works achieved significant progress in proving new upper bounds on the worst-case computational complexity of MAXSAT. All these works reduce general MAXSAT to a special case of MAXSAT where each variable appears a small number of times. So, it is important to design fast algorithms for (n, k)-MAXSAT to construct an efficient exact algorithm for MAXSAT. (n, k)-MAXSAT is a special case of MAXSAT where each variable appears at most k times in the input formula. For the (n, 3)-MAXSAT problem, we design a O*(1.1749(n)) algorithm improving on the previous record running time of O*(1.191(n)). For the (n, 4)-MAXSAT problem, we construct a O*(1.3803(n)) algorithm improving on the previous best running time of O*(1.4254(n)). Using the results, we develop a O*(1.0911(L)) algorithm for the MAXSAT where L is a length of the input formula which improves previous algorithm with O*(1.0927(L)) running time.
引用
收藏
页码:3898 / 3905
页数:8
相关论文
共 50 条
  • [31] Improved Algorithms for Maximum Agreement and Compatible Supertrees
    Viet Tung Hoang
    Wing-Kin Sung
    Algorithmica, 2011, 59 : 195 - 214
  • [32] Improved Algorithms for Maximum Agreement and Compatible Supertrees
    Viet Tung Hoang
    Sung, Wing-Kin
    ALGORITHMICA, 2011, 59 (02) : 195 - 214
  • [33] Parallel search for maximum satisfiability
    Ruben Martins
    Constraints, 2015, 20 (4) : 469 - 470
  • [34] Parallel search for maximum satisfiability
    Martins, Ruben
    Manquinho, Vasco
    Lynce, Ines
    AI COMMUNICATIONS, 2012, 25 (02) : 75 - 95
  • [35] The local search approximation algorithms for maximum not-all-equal k-satisfiability problems
    Xian, Ai-Yong
    Zhu, Da-Ming
    Jisuanji Xuebao/Chinese Journal of Computers, 2015, 38 (08): : 1561 - 1573
  • [36] Algorithms for Testing Satisfiability Formulas
    Marin Vlada
    Artificial Intelligence Review, 2001, 15 : 153 - 163
  • [37] Metalevel algorithms for variant satisfiability
    Skeirik, Stephen
    Meseguer, Jose
    JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING, 2018, 96 : 81 - 110
  • [38] Algorithms for testing satisfiability formulas
    Vlada, M
    ARTIFICIAL INTELLIGENCE REVIEW, 2001, 15 (03) : 153 - 163
  • [39] PARAMETERIZED EXACT AND APPROXIMATION ALGORITHMS FOR MAXIMUM k-SET COVER AND RELATED SATISFIABILITY PROBLEMS
    Bonnet, Edouard
    Paschos, Vangelis Th.
    Sikora, Florian
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2016, 50 (03): : 227 - 240
  • [40] New algorithms for Exact Satisfiability
    Byskov, JM
    Madsen, BA
    Skjernaa, B
    THEORETICAL COMPUTER SCIENCE, 2005, 332 (1-3) : 515 - 541