Improved Algorithms for Maximum Satisfiability and Its Special Cases

被引:0
|
作者
Brilliantov, Kirill [1 ]
Alferov, Vasily
Bliznets, Ivan [2 ]
机构
[1] Constructor Univ, Bremen, Germany
[2] Univ Utrecht, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
UPPER-BOUNDS; MAXSAT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Maximum Satisfiability (MAXSAT) problem is an optimization version of the Satisfiability problem (SAT) in which one is given a CNF formula with n variables and needs to find the maximum number of simultaneously satisfiable clauses. Recent works achieved significant progress in proving new upper bounds on the worst-case computational complexity of MAXSAT. All these works reduce general MAXSAT to a special case of MAXSAT where each variable appears a small number of times. So, it is important to design fast algorithms for (n, k)-MAXSAT to construct an efficient exact algorithm for MAXSAT. (n, k)-MAXSAT is a special case of MAXSAT where each variable appears at most k times in the input formula. For the (n, 3)-MAXSAT problem, we design a O*(1.1749(n)) algorithm improving on the previous record running time of O*(1.191(n)). For the (n, 4)-MAXSAT problem, we construct a O*(1.3803(n)) algorithm improving on the previous best running time of O*(1.4254(n)). Using the results, we develop a O*(1.0911(L)) algorithm for the MAXSAT where L is a length of the input formula which improves previous algorithm with O*(1.0927(L)) running time.
引用
收藏
页码:3898 / 3905
页数:8
相关论文
共 50 条
  • [1] ALGORITHMS FOR THE MAXIMUM SATISFIABILITY PROBLEM
    HANSEN, P
    JAUMARD, B
    COMPUTING, 1990, 44 (04) : 279 - 303
  • [2] Survey on algorithms for the maximum satisfiability problem
    He, Kun
    Zheng, Jiongzhi
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (02): : 82 - 95
  • [3] Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    Goemans, MX
    Williamson, DP
    JOURNAL OF THE ACM, 1995, 42 (06) : 1115 - 1145
  • [4] Horn Maximum Satisfiability: Reductions, Algorithms and Applications
    Marques-Silva, Joao
    Ignatiev, Alexey
    Morgado, Antonio
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 681 - 694
  • [5] Algorithms for maximum satisfiability using unsatisfiable cores
    Marques-Silva, Joao
    Planes, Jordi
    2008 DESIGN, AUTOMATION AND TEST IN EUROPE, VOLS 1-3, 2008, : 365 - 370
  • [6] Improved design debugging using maximum satisfiability
    Safarpour, Sean
    Mangassarian, Hratch
    Veneris, Andreas
    Liffiton, Mark H.
    Sakallah, Karem A.
    FMCAD 2007: FORMAL METHODS IN COMPUTER AIDED DESIGN, PROCEEDINGS, 2007, : 13 - +
  • [7] GREEDY ALGORITHMS FOR THE MAXIMUM SATISFIABILITY PROBLEM: SIMPLE ALGORITHMS AND INAPPROXIMABILITY BOUNDS
    Poloczek, Matthias
    Schnitger, Georg
    Williamson, David P.
    Van Zuylen, Anke
    SIAM JOURNAL ON COMPUTING, 2017, 46 (03) : 1029 - 1061
  • [8] Improved algorithms for the general exact satisfiability problem
    Hoi, Gordon
    Stephan, Frank
    THEORETICAL COMPUTER SCIENCE, 2021, 889 : 60 - 84
  • [9] An experimental evaluation of fast approximation algorithms for the maximum satisfiability problem
    Poloczek M.
    Williamson D.P.
    ACM Journal of Experimental Algorithmics, 2017, 22
  • [10] An Experimental Evaluation of Fast Approximation Algorithms for the Maximum Satisfiability Problem
    Poloczek, Matthias
    Williamson, David P.
    EXPERIMENTAL ALGORITHMS, SEA 2016, 2016, 9685 : 246 - 261