Electron Heating in High Mach Number Collisionless Shocks

被引:0
|
作者
Vanthieghem, A. [1 ,2 ,3 ]
Tsiolis, V. [2 ]
Spitkovsky, A. [2 ]
Todo, Y. [4 ]
Sekiguchi, K. [3 ]
Fiuza, F. [5 ,6 ]
机构
[1] Sorbonne Univ, Univ PSL, Observ Paris, CNRS,LERMA, F-75005 Paris, France
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[3] Natl Inst Nat Sci, Dept Astrofus Plasma Phys AFP, Headquarters Cocreat Strategy, Tokyo 1050001, Japan
[4] Natl Inst Nat Sci, Natl Inst Fus Sci, Gifu, 5095292, Japan
[5] Univ Lisbon, GoLP Inst Plasmas & Fusao Nucl, Inst Super Tecn, P-1049001 Lisbon, Portugal
[6] SLAC Natl Accelerator Lab, High Energy Dens Sci Div, Menlo Pk, CA 94025 USA
基金
欧洲研究理事会;
关键词
IN-CELL SIMULATION; PARTICLE-ACCELERATION; MAGNETIC-FIELD; COSMIC-RAYS; PERPENDICULAR SHOCKS; KINETIC SIMULATIONS; SUPERNOVA-REMNANTS; PLASMA; TRANSPORT; INSTABILITIES;
D O I
10.1103/PhysRevLett.132.265201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The energy partition in high Mach number collisionless shock waves is central to a wide range of highenergy astrophysical environments. We present a new theoretical model for electron heating that accounts for the energy exchange between electrons and ions at the shock. The fundamental mechanism relies on the difference in inertia between electrons and ions, resulting in differential scattering of the particles off a decelerating magnetically dominated microturbulence across the shock transition. We show that the selfconsistent interplay between the resulting ambipolar-type electric field and diffusive transport of electrons leads to efficient heating in the magnetic field produced by the Weibel instability in the high Mach number regime and is consistent with fully kinetic simulations.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] The ramp widths of high-Mach-number, quasi-perpendicular collisionless shocks
    Newbury, JA
    Russell, CT
    Gedalin, M
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A12) : 29581 - 29593
  • [22] Irreversibility and entropy issues concerning the heating of directly transmitted ions at low Mach number perpendicular collisionless shocks
    Ellacott, SW
    Wilkinson, WP
    BOUNDARY LAYERS, WAVES AND NON-LINEAR DYNAMICAL PROCESSES, 2006, 37 (03): : 473 - 482
  • [23] Direct Evidence for Magnetic Reflection of Heavy Ions from High Mach Number Collisionless Shocks
    Madanian, Hadi
    Schwartz, Steven J.
    Fuselier, Stephen A.
    Burgess, David
    Turner, Drew L.
    Chen, Li-Jen
    Desai, Mihir I.
    Starkey, Michael J.
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 915 (01)
  • [24] A physical relationship between electron-proton temperature equilibration and Mach number in fast collisionless shocks
    Ghavamian, Parviz
    Laming, J. Martin
    Rakowski, Cara E.
    ASTROPHYSICAL JOURNAL, 2007, 654 (01): : L69 - L72
  • [25] Electron Heating Scales in Collisionless Shocks Measured by MMS
    Johlander, Andreas
    Khotyaintsev, Yuri V. V.
    Dimmock, Andrew P. P.
    Graham, Daniel B. B.
    Lalti, Ahmad
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (05)
  • [26] Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism
    Guo, Xinyi
    Sironi, Lorenzo
    Narayan, Ramesh
    ASTROPHYSICAL JOURNAL, 2017, 851 (02):
  • [27] Electron heating and acceleration at collisionless shocks in the solar wind
    Gosling, JT
    ACCELERATION AND TRANSPORT OF ENERGETIC PARTICLES OBSERVED IN THE HELIOSPHERE, 2000, 528 : 207 - 214
  • [28] ION HEATING IN HIGH-MACH-NUMBER, OBLIQUE, COLLISIONLESS SHOCK-WAVES
    BISKAMP, D
    WELTER, H
    PHYSICAL REVIEW LETTERS, 1972, 28 (07) : 410 - &
  • [29] ELECTRON HEATING BY ION-ACOUSTIC TURBULENCE IN SIMULATED LOW MACH NUMBER SHOCKS
    TOKAR, RL
    GARY, SP
    QUEST, KB
    PHYSICS OF FLUIDS, 1987, 30 (08) : 2569 - 2575
  • [30] Quasiperpendicular High Mach Number Shocks
    Sulaiman, A. H.
    Masters, A.
    Dougherty, M. K.
    Burgess, D.
    Fujimoto, M.
    Hospodarsky, G. B.
    PHYSICAL REVIEW LETTERS, 2015, 115 (12)